Схема контактного и контактно-транзисторного зажиганий

Контактно транзисторная система зажигания: в чём отличия от классической схемы?

В предыдущей статье подробно рассказано о классической схеме системы зажигания, так называемой контактной. Идеальной её не назовешь, главной болезнью её является подгорание и быстрый износ контактов прерывателя. Она побудила инженеров продолжить разработки новых конструкций и новым шагом стала контактно транзисторная система зажигания.

Проблемы контактных систем и способы их решения

Освежим в памяти принцип работы классической схемы зажигания, чтобы понять, что в ней ненадёжно.

При повороте ключа в замке на катушку зажигания подаётся низкое напряжение сначала от аккумулятора, а потом и от бортовой сети.

Для того чтобы в силу вступили законы физики, и во вторичной обмотке катушки появилось высокое напряжение, достаточное для образования искры, прерыватель разрывает низковольтную цепь.

Обратите внимание

В это же время распределитель подключает контакты с высоким напряжением, идущие к нужной свече.

На первый взгляд всё просто и ломаться тут особо нечему. Но реальность сложнее – постоянное размыкание и замыкание контактных групп, коммутирующих катушку, приводит к их подгоранию из-за появляющегося в эти моменты импульса тока, а также износу.

Это и является главной проблемой классической схемы. Помимо этого, развитие самих моторов: увеличение их мощности, количества цилиндров и оборотов, сделало её применение очень сложным, а порой и невозможным.

Контактно транзисторная система зажигания. Что придумали инженеры?

Контактно транзисторная система зажигания, о которой мы сегодня говорим, лишена одного из основных недостатков своего предшественника – подгорания контактов прерывателя.

Решена эта проблема была радикально – нет больших токов на контактах, нет обгорания.

Для этого в цепи схемы появился новый узел, так называемый коммутатор, основу которого составляет полупроводниковый транзистор.

Он позволяет управлять большими токами при помощи малых. Для этого транзистор имеет три контакта – база, эмиттер, коллектор. Прикладывая к первым двум небольшой управляющий ток, можно управлять цепью коллектор эмиттер, где значение тока может быть в десятки раз больше.

Данное свойство и позволило избежать подгорания контактов.

Как устроена система с транзистором?

С теоретической частью мы закончили, теперь давайте еще раз пробежимся по чертежам выше и более детально посмотрим на устройство контактно транзисторной системы зажигания.

В принципе, как вы уже поняли, кардинальных отличий от более ранней контактной схемы не очень много. Основными составными частями являются:

От классической схемы отличается только наличием коммутатора.

Данный узел представляет собой блок, внутри которого, помимо силового транзистора находится ещё ряд элементов, защищающих его от бросков обратного тока, и прочие дополнительные детали.

Важно

Главное предназначение данного узла – управление током, проходящим через низковольтную обмотку катушки зажигания.

Прерыватель в этом случае управляет током базы транзистора, который в свою очередь подключает и отключает катушку зажигания, где токи гораздо выше и опаснее для механических контактов. В остальном алгоритм работы такой же, как и в простой контактной системе.

Плюсы и минусы

Неужели контактно транзисторная система зажигания отличается от классической схемы только отсутствием подгорающих контактов? И ради этого стоило городить огород с коммутатором?

На самом деле есть у этой системы и другие преимущества, а именно:

  • появилась возможность увеличить ток первичной обмотки катушки зажигания, а значит и во вторичной он увеличится, и как следствие, станет больше напряжение на свечах;
  • большее напряжение позволит увеличить зазор между контактами свечи, а это сделает её долговечней;
  • данная система зажигания позволяет повысить обороты мотора и его мощность;
  • работа мотора становиться устойчивее, благодаря улучшенному искрообразованию.

В целом контактно транзисторная система зажигания имеет хороший ресурс, долговечна и довольно надёжна, хотя и она не лишена недостатков.

К примеру, зависимость тока низковольтной обмотки катушки от тока базы транзистора, который, в свою очередь, может меняться в зависимости от состояния контактов прерывателя.

Ну что ж, коллеги-автолюбители, в заключение можно сделать вывод, что схема, ставшая героем этой статьи, является шагом вперёд по сравнению со старыми классическими вариантами, но и она далека от того, чтобы именоваться совершенной.

По большому счёту, контактно транзисторная система зажигания принцип работы которой мы попытались объяснить мало чем отличается от простой контактной. То ли дело бесконтактные технологии зажигания, и о них мы поговорим в следующей статье, не пропустите!

Источник: https://auto-ru.ru/kontaktno-tranzistornaya-sistema-zazhiganiya.html

Устройство контактно транзисторной системы зажигания

Работа контактно транзисторной системы основана на использовании полупроводниковых приборов.

Преимущества контактно транзисторной системы по сравнению с батарейной системой зажигания следующие:

  • через контакты прерывателя проходит небольшой ток управления транзистора, а не ток (до 8 А) первичной обмотки катушки зажигания (исключается эрозия и износ контактов).
  • Возрастает ток высокого напряжения и энергия искрового разряда (это позволяет увеличить зазор между электродами свечи зажигания, приводит к облегчению пуска двигателя, делает двигатель экономичнее).

Для начала давайте разберемся,

Что такое транзистор

Транзистор — это трехэлектродный прибор, изменяющий сопротивление от нескольких сот омов (транзистор закрыт) до нескольких долей ома (транзистор открыт).

Совет

Имея малое сопротивление во включенном состоянии и очень большое сопротивление в выключенном состоянии, транзистор вполне удовлетворяет требованиям предъявляемым к переключающим элементам.

В контактно-транзисторной системе зажигания транзистор работает в режиме переключения (режим ключа).

Устройство контактно транзисторной системы ЗИЛ-130

Схема устройства контактно-транзисторной системы зажигания двигателя ЗИЛ-130 (стрелками указана цепь высокого напряжения):

а – расположение выводов на транзисторном коммутаторе; б – общая схема системы зажигания; 1 – транзисторный коммутатор ТК 102; 2 — резисторы; 3 – блок защиты транзистора; 4 – первичная обмотка; 5 – катушка зажигания; 6 – вторичная обмотка; 7 – свечи зажигания; 8 — крышка; 9 – ротор с электродом; 10 – распределитель зажигания; 11 –подвижный контакт; 12 – неподвижный контакт; 13 – кулачок прерывателя; 14 – добавочные резисторы СЭ 117; 15 – выключатель добавочного резистора; 16 — АКБ; 17 – выключатель зажигания; 18 — стабилитрон; 19 — диод; 20 – импульсный трансформатор; 21 – германиевый транзистор; К, Б, Э – электроды транзистора (коллектор, база, эмиттер).

Контактно транзисторная система ЗИЛ-130 состоит из транзисторного коммутатора1, катушки зажигания 5, свечей зажигания 7, распределителя 10, добавочных резисторов 14, выключателя 15 добавочного резистора, АКБ 16 и выключателя зажигания 17.

Катушка зажигания Б114 – маслонаполненная, выполнена по трансформаторной схеме, т.е. ее первичная и вторичная обмотки не соединены между собой и между ними существует только магнитная связь. Первичная обмотка катушки зажигания имеет два вывода, расположенные на карболитовой крышке. Один вывод обозначен буквой К, другой не имеет обозначения. Один вывод вторичной обмотки присоединен к корпусу, а другой соединен с проводом высокого напряжения, укрепленным в центральном отверстии крышки катушки зажигания. При установке катушки зажигания ее надежно соединяют с массой так, чтобы не было зазоров.

Добавочные резисторы СЭ 107, выполненные в виде двух спиралей, установлены в отдельном кожухе и имеют три вывода: ВК-Б, ВК и К. Спирали изготовлены из константановой проволоки, сопротивление которой при нагреве не изменяется, и в первичной обмотке катушки зажигания поддерживается постоянное напряжение.

Транзисторный коммутатор ТК 102 состоит из транзистора 21, импульсного трансформатора 20 и блока 3 защиты транзистора. В блок защиты входят резисторы 2, диод 19, стабилитрон 18 и конденсатор.

Все приборы коммутатора размещены в алюминиевом корпусе, имеющем ребра для лучшего отвода теплоты. У транзисторного коммутатора есть четыре вывода, обозначенные М, К, Р, и один без обозначения. Вывод М надежно соединяют с массой автомобиля многожильным неизолированным проводом, вывод К с концом первичной обмотки катушки зажигания, вывод без обозначения – со вторым концом первичной обмотки катушки зажигания, Р с подвижным контактом прерывателя.

Как работает контактно-транзисторная система зажигания?

Если выключатель зажигания 17 включен, а контакты прерывателя разомкнуты, то транзистор 21 заперт, так как нет тока в его цепи управления, т.е. в переходе эмиттер – база. Ток не проходит и между эмиттером и коллектором на массу, так как сопротивление этого перехода очень большое.

При замыкании контактов прерывателя в цепи управления транзистора (эмиттер-база) проходит ток, в результате транзистор открывается. Сила тока управления невелика около (0,8 А) и уменьшается до 0,3 А с увеличением частоты вращения кулачка прерывателя.

В контактно-транзисторной системе зажигания имеются две цепи низкого напряжения: цепь управления транзистора и цепь рабочего тока.

Совет

Цепь управления транзистора: положительный вывод АКБ 16 – выключатель зажигания 17 – выводы ВК-Б и К добавочных резисторов 14 – первичная обмотка 4 катушки зажигания 5 – вывод транзисторного коммутатора 1 – электроды перехода эмиттер – база транзистора 21 – первичная обмотка импульсного трансформатора 20 – вывод Р – контакты 11 и 12 прерывателя – масса – отрицательный вывод АКБ. При прохождении тока управления транзистора через переход эмиттер-база значительно уменьшается сопротивление эмиттер-коллектор, и транзистор открывается, включая цепь рабочего тока (7-8 А).

Цепь рабочего тока низкого напряжения

Положительный вывод АКБ 16 – выключатель зажигания 17 – выводы ВК-Б и К добавочных резисторов 14 – первичная обмотка 4 катушки зажигания 5 – вывод транзисторного коммутатора 1 – электроды перехода эмиттер-коллектор транзистора 21 – вывод М – масса – отрицательный вывод АКБ.

При размыкании контактов прерывателя прекращается ток в цепи управления транзистора и значительно возрастает его сопротивление. Транзистор закрывается, выключая цепь рабочего тока низкого напряжения.

Магнитный поток изменяющегося поля пересекает витки катушки зажигания, индуктируя во вторичной обмотке ЭДС, в результате чего возникает высокое напряжение (около 30000 В), а в первичной обмотке ЭДС самоиндукции (около 80-100 В).

Цепь высокого напряжения

Вторичная обмотка 6 катушки зажигания 5 ротор 9 распределителя 10 – свечи зажигания 7 ( в соответствии с порядком работы двигателя) – масса – вторичная обмотка 6 катушки зажигания 5.

Импульсный трансформатор необходим для быстрого запирания транзистора. При размыкании контактов прерывателя во вторичной обмотке импульсного трансформатора индуктируется ЭДС самоиндукции, направление которой противоположно направлению рабочего тока на переходе база-эмиттер. Благодаря этому быстро исчезает магнитное поле и ток в первичной обмотке 4 катушки зажигания 5. Диод 19 и стабилитрон 18 в прямом направлении – мимо первичной обмотки катушки зажигания.

Необходимо помнить, что контакты прерывателя пропускают и прерывают только силу тока управления транзистора 0,3-0,8 А. Если на них попало масло, образовалась масляная пленка или слой окиси, то ток управления транзистора не сможет пройти через контакты. Поэтому контакты прерывателя промывают бензином и следят за тем, чтобы они всегда были чистыми.

Источник: http://www.AutoEzda.com/elect/1084-

Схема и принцип работы контактно-транзисторной системы зажигания

Рис. 1. Электрические схемы контактно-транзисторной системы зажигания: а — принципиальная; б — с транзисторным коммутатором TK102.

Читайте также:  Как устроена и работает рулевая рейка

На рис. 1, а показана принципиальная схема контактно-транзисторной системы зажигания. Контакты прерывателя S1 включены в цепь базы (Б) транзистора VT, а первичная обмотка L1 катушки зажигания Т1 — в цепь эмиттера (Э) этого транзистора.

Наличие транзистора VT значительно облегчает работу контактов прерывателя, так как через них протекает ток управления транзистором (ток базы Iб), а ток первичной обмотки катушки зажигания I1 — через переход эмиттер — коллектор транзистора.

В цепь первичной обмотки включены добавочный резистор Rд шунтируемый контактами S2 в момент пуска двигателя стартером, выключатель зажигания S3 и аккумуляторная батарея GB.

При включении зажигания и замыкании контактов прерывателя S1 потенциал базы транзистора VT будет отрицательным относительно эмиттера, поэтому транзистор откроется и в первичной цепи появится ток I1. В этом случае сопротивление транзистора (переход эмиттер—коллектор) будет минимальным (0,15 Ом).

При размыкании контактов прерывателя S1 ток базы транзистора Iб прерывается, разность потенциалов базы и эмиттера становится равной нулю, транзистор запирается (значительно повышается сопротивление перехода эмиттер—коллектор), сила тока в первичной обмотке катушки зажигания резко убывает, что обеспечивает индуктирование высокого напряжения во вторичной обмотке L2.

В случае запирания транзистора при прекращении тока базы, т. е. при обрыве цепи базы, снижается устойчивость работы транзистора.

Для улучшения процесса запирания транзистора в реальных схемах контактно-транзисторных систем зажигания применяют запирание транзистора, при котором на базу транзистора в момент размыкания контактов прерывателя подается положительный по отношению к эмиттеру потенциал.

Обратите внимание

В этом случае получается наибольшая скорость спада силы первичного тока, что способствует увеличению вторичного напряжения в катушке зажигания.

На рис. 1, б приведена электрическая схема контактно-транзисторной системы зажигания с транзисторным коммутатором ТК102, которая предназначена для восьмицилиндровых двигателей.

Схема включает транзисторный коммутатор I (ТК102), катушку зажигания Т1 (Б114), прерыватель S1 и распределитель S4, блок резисторов II (СЭ107), составленный из резисторов Rд1 (0,5 Ом) и Rд2 (0,5 Ом), выключатель добавочного резистора S2.

Резистор Rд1 ограничивает максимальную силу тока ток I1 в первичной цепи, а резистор Rд2 выполняет функции добавочного резистора, как в контактной системе зажигания. Катушка зажигания Б114 имеет первичную обмотку L1 из 180 витков провода диаметром 1,25 мм, марки ПЭВ и вторичную L2 из 41 ООО витков провода диаметром 0,06 мм марки ПЭЛ.

Сопротивление первичной обмотки 0,38 Ом, вторичной 20 500 Ом. Индуктивность первичной обмотки 3,7 мГн, а вторичной 150—170 Гн. Коэффициент трансформации Кт = w1/w2 = 228.

Уменьшение числа витков первичной обмотки и ее индуктивности по сравнению с катушками зажигания контактных систем необходимо для понижения ЭДС самоиндукции в первичной цепи чтобы исключить возможность пробоя силового транзистора коммутатора. Поэтому катушки зажигания контактных и контактно-транзисторных систем зажигания не взаимозаменяемы.

Транзисторный коммутатор включает мощный германиевый транзистор VT3 типа ГТ701А, стабилитрон VD2 (Д817В), диод VD1 (Д226), импульсный трансформатор Т2, конденсаторы C1 (1 мкФ) и С2 (50 мкФ), резистор R1 (27 Ом).

Все элементы транзисторного коммутатора смонтированы в литом алюминиевом корпусе, имеющем ребристую поверхность для увеличения теплоотдачи.

Важно

Необходимость интенсивного отвода теплоты вызвана применением германиевого транзистора.

Чтобы транзистор не перегревался, температура окружающей среды не должна превышать 65°С, поэтому транзисторный коммутатор ТК102 на автомобиле устанавливается в кабине водителя, а не под капотом двигателя.

Система работает следующим образом.

При включении выключателя зажигания S3 после замыкания контактов прерывателя S1 транзистор VT3 открывается, так как потенциал его базы (Б) становится ниже потенциала эмиттера (Э), и по первичной обмотке L1 катушки зажигания будет протекать ток I1. Сила тока базы Iб равна 0,8—0,3 А (уменьшаясь при увеличении частоты вращения кулачка валика прерывателя), а сила тока в первичной обмотке 7—8 А.

В момент размыкания контактов прерывателя транзистор VT3 запирается. Ток в первичной цепи резко уменьшается, и во вторичной обмотке L2 катушки зажигания создается высокое напряжение, импульсы которого распределяются по свечам зажигания распределителем S4.

Трансформатор Т2 обеспечивает активное запирание транзистора VT3. Первичная обмотка L3 этого трансформатора включена последовательно с контактами прерывателя.

При размыкании контактов прерывателя во вторичной обмотке L4 индуктируется ЭДС, обеспечивающая активное запирание транзистора VT3 (потенциал его базы в момент запирания становится выше потенциала эмиттера).

Резистор формирует импульс, ускоряющий запирание транзистора. При наличии резистора (27 Ом) время запирания транзистора составляет около 30 мкс, без него 60 мкс.

Для защиты транзистора при возрастании ЭДС самоиндукции, возникающей в первичной обмотке катушки зажигания (например, при отсоединении провода высокого напряжения от свечи или крышки распределителя во время работы двигателя и при проверке системы зажигания на искру), включен кремниевый стабилитрон VD2. Напряжение стабилизации стабилитрона выбрано таким, что оно вместе с напряжением питания не превышало предельно допустимого напряжения на участке эмиттер—коллектор (свыше 100 В) транзистора VT3.

Совет

Диод VD1, включенный встречно стабилитрону, предотвращает шунтирование стабилитроном первичной обмотки.

Конденсатор С2 предназначен для защиты транзистора от случайных перенапряжений в цепи питания схемы (например, при работе без батареи, при неисправности регулятора напряжения, коротком замыкании в обмотках генератора, ухудшении контакта с массой генератора и регулятора).

При увеличении скорости запирания транзистора импульсном трансформатором Т2 скорость спада силы тока первичной цепи достаточна для получения необходимого вторичного напряжения, поэтому в контактно-транзисторных системах зажигания конденсатор параллельно контактам прерывателя не включается.

Конденсатор С1 обеспечивает снижение тепловых потерь в транзисторе VT3 в период его переключения.

К преимуществам контактно-транзисторной системы зажигания относятся увеличение в два раза вторичного напряжения, энергии и длительности искрового разряда, повышение срока службы контактов прерывателя, времени наработки свечей между регулировкой зазора в свечах, так как система менее чувствительна к возрастанию искрового промежутка свечи.

Вместе с тем контактно-транзисторная система зажигания не устраняет некоторых недостатков контактных систем: вибраций контактов при большой частоте вращения валика прерывателя, износа подушечки рычажка и граней кулачка прерывателя, что требует систематической проверки и регулировки зазора и угла замкнутого состояния контактов. Последнее особенно неудобно при экранировании распределителя. Поэтому разработаны бесконтактные системы зажигания, где прерывание тока в первичной цепи осуществляется электронным устройством.

Источник: http://www.xn--b1agveejs.su/avtoelektronika/328-kontaktno-tranzistornaya-systema-zajiganiya.html

Контактные системы зажигания, устройство, принцип работы

Если вы найдете ошибку в тексте, выделите её мышью и нажмите Ctrl+Enter. Спасибо.

Контактная система зажигания выделяется наличием в составе распределителя, от которого производится подача напряжения к свечам зажигания двигателя.

В чем особенности этой системы? Где она применяется, и как работает? Из каких элементов состоит, и с какими поломками может столкнуться автовладелец в процессе пользования транспортным средством? Рассмотрим эти моменты подробнее.

Где используется?

Прошлые и настоящие владельцы ВАЗ «классики», разбирающиеся в конструкции таких автомобилей, прекрасно знают слабые места и принципы функционирования схемы зажигания контактного типа.

Ее особенность заключается в распределении напряжения к камерам сгорания двигателя через контактные соединения (отсюда и название).

Современные автомобили оборудуются более современным (электронным) зажиганием, которое управляется микропроцессором.

К основным системам, работающим на контактном принципе, стоит отнести:

  • КС3 (KSZ) — наиболее распространенный тип схемы, в структуре которой имеется распределитель, катушка и прерыватель.
  • КТС3 (HKZ-2, JFU4, HKZk) — система зажигания с контактным датчиком и предварительным накоплением энергии.
  • KTC3 (TSZi) — еще один тип системы, работающей на контактном принципе. В ее составе присутствуют транзистор и контакты, а также индукционный накопитель энергии.

Общий принцип работы

Наличие контактной системы зажигания в автомобиле подразумевает, что зажигание горючего в цилиндрах осуществляется по факту появления искры от свечи зажигания.

При этом сама искра возникает при поступлении импульса высокого напряжения от катушки зажигания.

Ключевую функцию выполняет катушка зажигания, которая по принципу работы напоминает трансформатор.

Обратите внимание

Она состоит из двух обмоток (первичной и вторичной), намотанных на сердечник из металла.

Сначала напряжение подводится к первичной обмотке, после чего в катушке создается ток.

Как только происходит кратковременный разрыв первичной цепи, магнитное поле нивелируется, но во вторичной обмотке возникает высокое напряжение (около 25000 Вольт).

В этот момент на первичной обмотке также присутствует напряжение, равное 300 Вольтам.

Причина его появления — токи самоиндукции. Именно из-за появления этого тока возникает обгорание и искрение контактов прерывателя.

Из сказанного выше можно сделать вывод, что вторичное напряжение напрямую зависит от следующих аспектов:

  • Магнитного поля;
  • Уровня интенсивности падения тока в первичной обмотке.

Для роста вторичного напряжения и снижения риска обгорания контактной группы, в цепочку включается конденсатор (устанавливается параллельно). Даже при незначительном размыкании конденсатор заряжается.

Принципиальная схема контактной системы зажигания показана ниже.

Разряд емкости происходит через первичную обмотку, посредством формирования импульсного тока обратного напряжения. Благодаря этой особенности, магнитное поле исчезает, а вторичное напряжение растет.

Оптимальная емкость конденсатора для контактной системы зажигания составляет 0,17-0,35 мкФ. Для примера, в «Жигулях» отечественного производства установлен конденсатор, имеющий емкость в 0,2-0,25 мкФ (при частоте от 50 до 1000 Гц).

Важно

Если система зажигания автомобиля работает без сбоев, вторичное напряжение должно постоянно расти. Оно зависит от двух основных параметров — размера зазора между свечными электродами, а также давления в цилиндрах машины.

Для контактной системы зажигания этот параметр (вторичное напряжение) должен находиться на уровне 8-12 Вольт.

Чтобы система работала без сбоев, в момент прерывания упомянутый показатель вырастает до 16-25 кВ. Наличие подобного запаса позволяет избежать неблагоприятных последствий от тех или иных колебаний в системе зажигания.

К упомянутым выше проблемам можно отнести корректировки состава горючей смеси или изменение расстояния между электродами свечи.

К примеру, снижение уровня кислорода в топливно-горючей смеси приводит к росту напряжения до 20 кВ.

Несмотря на ряд проведенных мероприятий, полностью избежать подгорания контактной группы создателям контактной системы зажигания не удалось. Оптимальным способом снижения этого эффекта является четкое выдерживание зазора на минимальном уровне (0,3-0,4 мм).

В качестве примера можно привести отечественные машины ВАЗ, в которых величина зазора в прерывателе равна 0,35-0,45 мм, что соответствует углу в 52-58 градусов Цельсия (при условии, что контактная группа находится в замкнутом состоянии).

Совет

В случае изменения этого угла корректируется и напряжение во вторичной обмотке. В итоге искры появляются не только на контактах, но и на бегунках. По этой причине уменьшается качество искры, и мотор теряет мощность.

Отдельного внимания заслуживает надежность контактной системы зажигания, которая зависит от целого ряда факторов:

  • Формы, энергии и времени появления искры;
  • Количества искр на определенной площади;
  • Вторичного напряжения (одна из наиболее важных характеристик). Чем больше этот параметр, тем меньше зависимость системы от состава горючей смеси и уровня чистоты электродов.
Читайте также:  Опель представил свою новинку, названную в честь сына основателя фирмы

Устройство

Не секрет, что контактная система зажигания состоит из множества различных элементов:

  • АКБ;
  • Механический прерыватель и распределитель. Первый дает ток низкого, а второй — высокого напряжения;
  • Замок, катушка и свечи зажигания;
  • Регуляторы опережения зажигания представлены двумя видами — центробежным и вакуумным;
  • Высоковольтные провода.

Рассмотрим основные элементы подробно:

  • Прерыватель — узел, который обеспечивает кратковременное разделение цепочки тока в обмотке низкого напряжения. В момент разрыва во вторичной цепи формируется высокое напряжение.
  • Конденсатор — деталь, целью которой является предотвращение подгорания контактов в цепи прерывателя. Монтаж емкости производится параллельно контактной группе, что позволяет поглощать изделию больший объем энергии. К дополнительной функции конденсатора стоит отнести повышение напряжения на вторичной обмотке.
  • Распределитель — элемент контактной системы зажигания, который обеспечивает раздачу потенциала напряжения на каждую из свечей цилиндров. Конструктивно устройство состоит из крышки и ротора. В верхней части расположены контакты, а потенциал от катушки направляется на центральный контакт, а через боковые контакты к свечам.
  • Катушка зажигания — устройство, которое преобразует напряжение (из низкого в высокое). Находится деталь в моторном отсеке, как и большая часть элементов контактной системы зажигания. Конструктивно в изделии предусмотрено две обмотки. Одна — низкого, а другая — высокого напряжения.
  • Трамблер — представляет собой устройство, в котором вместе находятся прерыватель и распределитель, функционирующие от коленчатого вала мотора.
  • Центробежный регулятор — узел, который обеспечивает изменение угла опережения зажигания. Этот параметр представляет собой угол поворота коленвала, в момент достижения которого на свечи подается напряжение. Чтобы гарантировать полное сгорание горючей смеси, рассматриваемый угол устанавливается с опережением.

Конструктивно регулятор — пара грузиков, которые действуют на пластинку с размещенными на ней кулачками прерывателя. Здесь стоит отметить, что пластинка свободно перемещается, но угол опережения ставится за счет позиции трамблера мотора.

  • Регулятор вакуумного типа — устройство, которое обеспечивает изменение угла опережения на фоне корректировки уровня нагрузки на мотор (меняется при нажатии на педаль газа). Регулятор объединяется с полостью дроссельного узла и корректирует угол с учетом уровня разрежения.
  • Свечи зажигания — стандартные элементы запала, которые преобразуют энергию в искру, необходимую для поджигания топливной смеси в цилиндрах мотора. В момент передачи импульса на свечи формируется искра, зажигающая горючую смесь.
  • Высоковольтные провода (бронепровода) — неизменный элемент контактной системы зажигания, с помощью которых высокое напряжение передается по пути «катушка — распределитель — свечи зажигания». Конструктивно изделие представляет собой гибкий проводник большого сечения с одной жилой из меди и многослойной изоляцией.

Принцип действия

Для полноценного обслуживания контактной системы зажигания важно понимать ее принцип действия, а также особенности взаимодействия различных элементов.

Пока контур прерывателя замкнут, ток проходит только по первичной обмотке.

Как только происходит разъединение цепи с помощью прерывающего устройства, во второй обмотке формируется высокое напряжение.

В этот же момент созданный импульс направляется по бронепроводам к крышке распределительного устройства, а дальше — к свечам зажигания. При этом распределение производится под определенным углом опережения.

Обороты коленчатого и распределительного валов находятся в полном взаимодействии. Это значит, что при росте оборотов первого, частота вращения второго также возрастает.

Здесь в работу вступает регулятор центробежного типа, грузики которого расходятся и передвигают передвижную пластинку с кулачками.

Немногим раньше производится разъединение цепочки прерывателя, а угол опережения растет.

В случае снижения оборотов коленвала происходит обратный процесс — снижение угла опережения.

Схема работы показана ниже.

Контактно-транзисторная система зажигания

С целью оптимизации схемы разработчики добавили в конструкцию транзисторный коммутатор, который устанавливается в первичной обмотке. Его управление производится с помощью контактов прерывателя.

Принципиальная схема показана ниже.

Особенность системы в том, что применение дополнительного устройства позволило снизить ток в цепи и продлить ресурс контактной группы прерывателя (она стала меньше подгорать).

Контактно-транзисторная схема, благодаря незначительным изменениям, получила лучшие характеристики, если сравнивать ее с классическим вариантом зажигания. Из-за применения транзистора в системе был добавлен новый узел — коммутатор.

Обратите внимание

Преимущество транзистора в этой схеме в том, что даже небольшого тока, направленного на управление (в базу), достаточно для контроля тока большей величины.

Как уже отмечалось, новая система контактно-транзисторного типа имеет небольшие отличия от прежней версии системы. Ее особенность заключается в особых характеристиках, которыми не может похвастаться стандартная контактная схема.

Главное отличие заключается в том, что прерыватель взаимодействует напрямую с транзистором, а не с «бобиной». В остальном работа контактно-транзитной системы аналогична.

Как только происходит прерывание тока в первичной обмотке, во второй цепи возникает импульс высокого напряжения.

Если не обращать внимания на конструктивные особенности и принципы подключения коммутатора, можно выделить одно главное преимущество — возможность повышения первичного тока, благодаря применению транзистора.

При этом удается решить ряд задач:

  • Увеличить зазор между свечными электродами;
  • Поднять вторичное напряжение;
  • Устранить проблемы с пуском при низкой температуре;
  • Оптимизировать процесс образования искры;
  • Поднять число оборотов и мощность мотора.

Еще одна особенность контактно-транзисторной схемы заключается в необходимости использования катушки с отдельной первичной и вторичной обмоткой.

Рассмотренные изменения схемы позволили снизить нагрузку на контактную группу прерывателя и уменьшить проходящий через нее ток. В итоге контакты служат дольше, а надежность системы возрастает.

Несмотря на рассмотренные плюсы, нельзя не отметить и ряд минусов контактно-транзисторной системы, которые связаны с работой прерывателя.

Важно

Так, в схеме формируется искра в момент, когда происходит разрывание тока в «бобине». Ток, который поступает в транзистор, имеет достаточную величину для влияния на работу детали.

Кроме того, уменьшение тока на контактной группе прерывателя негативно сказывается на определенных характеристиках системы.

Неисправности и их причины

От эффективности работы контактной системы зажигания зависит стабильность пуска автомобиля. Вот почему автовладелец должен знать, какие бывают неисправности, и чем они вызваны.

К основным поломкам можно отнести:

Мощность мотора падает или возникают перебои в его работе.

Причин может быть несколько:

  • Нарушение целостности крышки распределителя;
  • Повреждение ротора;
  • Выход из строя свечи зажигания или нарушение зазора между электродами;
  • Ошибочно выставленный угол зажигания.

Для устранения поломки можно сделать следующее — отрегулировать угол опережения, поменять вышедшие из строя элементы или выставить необходимые зазоры в прерывателе и электродах свечей.

На свечах отсутствует искра.

Подобная неисправность может быть вызвана:

  • Обгоранием контактов прерывателя и отсутствием необходимого зазора;
  • Плохим контактом или обрывом проводов во вторичной цепи;
  • Выходом из строя конденсатора, ротора, катушки зажигания, бронепроводов или свечей.

Для устранения неисправности требуется отрегулировать зазор контактов прерывателя, поменять неисправные элементы и (или) проверить исправность цепей обеих обмоток (высшей и низшей).

Рассмотренные выше поломки могут возникать по нескольким причинам — естественный износ деталей, несоблюдение правил эксплуатации, применения неоригинальных элементов схемы, а также негативное воздействие на узлы.

На современном этапе контактная система зажигания уходит в прошлое и напоминает о себе только при обслуживании старых автомобилей.

На ее смену пришли современные, точные и более надежные схемы, построенные на микропроцессорном принципе.

Если в статье есть видео и оно не проигрывается, выделите любое слово мышью, нажмите Ctrl+Enter, в появившееся окно введите любое слово и нажмите «ОТПРАВИТЬ». Спасибо.

ПОДЕЛИТЬСЯ НОВОСТЬЮ С ДРУЗЬЯМИ:

Источник: https://AutoTopik.ru/jelektrika/zazhiganie/1339-kontaktnaya-sz-shemy.html

Контактно-транзисторная система зажигания

Явилась
переходным этапом от контактной к
бесконтактным электронным системам.

В
ней устраняется недостаток контактной
системы — подгорание и износ контактов
прерывателя, коммутирующих цепь с
индуктивностью и значительной силой
тока.

В
контактно-транзисторной системе
первичную цепь обмотки возбуждения
коммутирует транзистор, управляемый
контактами прерывателя.

С применением
контактно-транзисторной системы на
автомобиле появился новый блок —
электронный коммутатор,
объединяющий в себе силовой коммутирующий
транзистор и элементы схемы его управления
и защиты.

Совет

На рис. 4 представлена схема
контактно-транзисторного зажигания
с коммутатором ТК102, которая обеспечивает
зажигание восьмицилиндровых двигателей
автомобилей ЗИЛ и ГАЗ.

При замыкании контактов прерывателя
через них начинает протекать базовый
ток транзистора VT, который открывается
и включает первичную цепь обмотки
возбуждения в питающую сеть. При
размыкании контактов прерывателя
транзисторVTзакрывается, ток в
первичной цепи резко прерывается и на
свечах появляется всплеск высокого
напряжения, как это и было в контактной
системе.

Характеристики контактно-транзисторной
системы аналогичны контактной, за
исключением того, что снижения вторичного
напряжения на низких частотах вращения
кулачка не происходит.

Импульсный трансформатор Тв схеме
ускоряет запирание транзистора, цепьVD1,VD2защищает
транзистор от перенапряжений, а
конденсаторС2— от случайных импульсов
напряжения по цепи питания.

Конденсатор С1способствует уменьшению
коммутационных потерь в транзисторе.
Добавочный резистор 4 закорачивается
при пуске.

Срок службы контактов прерывателя в
контактно-транзисторной системе больше,
чем в контактной, так как базовый ток,
коммутируемый ими, невелик.

Однако
механический износ механизма прерывателя
и влияние вибраций на работу контактов
в этой системе не устранены.

В настоящее время выпускаются различные
электронные блоки, улучшающие работу
контактной системы зажигания и фактически
превращающие ее в контактно-транзисторную
(ТАНДЕМ-2, БУЗ-06, ОКТАН‑1, ЭРУОЗ и др.).

Контрольные
вопросы

  1. Чем приводится в движение кулачек прерывателя и какова его роль в работе системы зажигания?

  2. Зачем в первичную цепь катушки зажигания включают добавочный резистор?

  3. Через какой механизм высокое напряжение подается к свечам зажигания?

  4. Что представляет собой катушка зажигания, из чего она состоит и как работает?

  5. Как изменяется вторичное напряжение катушки зажигания в зависимости от частоты вращения двигателя и почему?

  6. Чем отличается контактно-транзисторная система зажигания от контактной, как она работает и в чем ее преимущество?

10. Электронные системы зажигания

В электронных системах зажигания
контактный прерыватель заменен
бесконтактными датчиками. В качестве
датчиков используются оптоэлектронные
датчики, датчики Виганда, но наиболее
часто — магнитоэлектрические датчики
(МЭД) и датчики Холла (ДХ).

МЭД бывают генераторного и коммутаторного
типов. В генераторном датчике вращается
постоянный магнит, помещенный внутрь
клювообразного магнитопровода. При
этом в катушке, надетой на свой
клювообразный магнитопровод, наводится
ЭДС.

В МЭД коммутаторного типа вращается
зубчатый ротор из магнитомягкого
материала, а магнит неподвижен. ЭДС в
катушке наводится за счет изменения
величины ее магнитного потока при
совпадении и расхождении выступов
статора и ротора.

Обратите внимание

Недостатком МЭД
является зависимость выходного сигнала
от частоты вращения, а также значительная
индуктивность катушки, вызывающая
запаздывание в прохождении сигнала.

От этих недостатков избавлен датчик
Холла Особенность его состоит в том,
что ЭДС, снимаемая с двух граней его
чувствительного элемента, пропорциональна
произведению силы тока, подводимого к
двум другим граням, на индукцию магнитного
поля, пронизывающего датчик.

В реальных
системах магнитное поле создается
неподвижным магнитом, который отделен
от датчика магнитомягким экраном с
прорезями.

Читайте также:  Солнцемобиль - возможно ли ездить на энергии солнца

Если между магнитом и чувствительным
элементом попадает стальной выступ,
магнитный поток им шунтируется и на
датчик не попадает, ЭДС на выходе
чувствительного элемента отсутствует.

Прорезь беспрепятственно пропускает
магнитный поток, и на выходе элемента
появляется ЭДС.

Наиболее простой в схемном и функциональном
исполнении является бесконтактная
система зажигания с нерегулируемым
временем накопления энергии.

Бесконтактные системы зажигания с
нерегулируемым временем накопления
энергии
.

Такая система зажигания принципиально
отличается от контактно-транзисторной
только тем, что в ней контактный
прерыватель заменен бесконтактным
датчиком.

На рис. 1 приведена схема системы с
коммутатором 13.3734-01 автомобилей «Волга».

Сигнал с обмотки Lмагнитоэлектрического
датчика через диодVD2, пропускающий
только положительную полуволну
напряжения, и резисторыR2,R3поступает на базу
транзистораVT1. Транзистор открывается,
шунтирует переход база-эмиттер транзистораVT2, который закрывается.

Важно

Закрывается
и транзисторVT3, ток в первичной
обмотке катушки зажигания прерывается
и на выходе вторичной обмотки возникает
высокое напряжение. В отрицательную
полуволну напряжения транзисторVT1закрыт, открытыVT2иVT3, и ток
начинает протекать через первичную
обмотку катушки зажигания.

Очевидно,
что число пар полюсов датчика должно
соответствовать числу цилиндров
двигателя.

Цепь R3-C1осуществляет фазосдвигающие
функции, компенсирующие фазовое
запаздывание протекания тока в базе
транзистораVT1из-за значительной
индуктивности обмотки датчикаL,
что снижает погрешность момента
искрообразования.

Стабилитрон VD3и резисторR4защищают схему коммутатора от повышенного
напряжения в аварийных режимах, так
как, если напряжение в бортовой цепи
превышает 18В, цепочка начинает пропускать
ток, транзисторVT1открывается и
закрывается выходной транзисторVT3.
В цепях защиты от опасных импульсов
напряжения служат конденсаторыСЗ,С4,С5,С6; диодVD4защищает
схему от изменений полярности бортовой
сети.

Форма и величина входного напряжения
магнитоэлектрического датчика изменяются
с частотой вращения, что влияет на момент
искрообразования. Кроме того, в системе,
не устранен существенный недостаток
контактного зажигания — уменьшение
вторичного напряжения при росте частоты
вращения коленчатого вала. Поэтому
более перспективна система с регулированием
времени накопления энергии.

Бесконтактная система зажигания с
регулированием времени накопления
энергии
.

Регулируя
время накопления энергии, т.е.

время,
когда первичная цепь катушки зажигания
подключена к сети питания, можно сделать
ток разрыва этой цепи независимым или
мало зависимым от частоты вращения
коленчатого вала двигателя, а значит,
и избавиться от недостатка контактной
системы зажигания — снижения вторичного
напряжения с ростом частоты вращения.

Принцип такого регулирования состоит
в том, чтобы с ростом частоты вращения
увеличить относительное время включения
катушки зажигания в сеть так, чтобы
абсолютное время включения осталось
неизменным. На рис. 2 представлена
система зажигания автомобиля ВАЗ-2108
с электронным коммутатором 36.3734-20 и
датчиком Холла.

В коммутаторе применена микросхема
L497B. Стабилизация вторичного напряжения
достигается в схеме двумя путями:
регулированием времени нахождения
транзистора VT1в открытом состоянии
(т.е. времени включения первичной цепи
катушки зажигания в сеть) или ограничением
силы тока в первичной цепи значением
около 8 А. Последнее, кроме того,
предотвращает перегрев катушки.

Совет

Схема работает следующим образом. С
датчика Холла на вход коммутатора
приходит сигнал прямоугольной формы,
который приблизительно на 3В меньше
напряжения питания, с длительностью,
соответствующей прохождению выступов
экрана мимо чувствительного элемента
датчика. Нижний уровень сигнала 0,4 В
соответствует прохождению прорези.

В момент перехода от высокого уровня к
низкому, происходит искрообразование.
В микросхеме коммутатора сигнал в блоке
формирования периода накопления энергии
сначала инвертируется, затем интегрируется.

На выходе интегратора образуется
пикообразное напряжение, которое тем
больше, чем меньше частота вращения
двигателя. Это напряжение поступает на
вход коммутатора, на другой вход которого
подано опорное напряжение.

Компаратор преобразует напряжение во
время. Сигнал на входе компаратора имеет
место тогда, когда значение пилообразного
напряжения достигает опорного и превышает
его.

При большой частоте вращения пилообразное
напряжение мало, соответственно и мала
длительность сигнала на выходе
компаратора. С исчезновением выходного
сигнала компаратора через схему
управления открывается транзистор VT1
и первичная цепь зажигания включается
в сеть.

Следовательно, время накопления
энергии в катушке соответствует времени
отсутствия сигнала на выходе компаратора.
Уменьшение длительности сигнала
компаратора позволяет увеличить
относительную величину времени накопления
энергии и тем самым стабилизировать ее
абсолютное значение.

Блок ограничения силы выходного тока
срабатывает по сигналу, снимаемому с
резисторов, включенных последовательно
в первичную цепь зажигания.

Если этот
сигнал достигает уровня, соответствующего
силе тока 8 А, блок переводит выходной
транзистор в активное состояние с
фиксированием этого значения тока.

Обратите внимание

Блок
безыскровой отсечки отключает катушку
зажигания в случае, если включено
электропитание, но вал двигателя
неподвижен. При остановленном после
вращения двигателе отключение происходит
сразу, в противном случае — через 2-5 с.

Схема насыщена элементами защиты от
всплесков напряжения и включения
обратной полярности питания. Регулировка
угла опережения зажигания осуществляется
традиционными способами, т.е. центробежным
и вакуумным регуляторами.

Микросхема L497B применяется в двухканальном
коммутаторе 64.3734-20 для систем с
низковольтным распределителем энергии.
В коммутаторе 6420.3734 применен выходной
транзистор BY 931 ZPF1 с внутренней
защитой от перенапряжения, что в
значительной мере повышает надежность
работы коммутатора.

Контрольные
вопросы

  1. Какими устройствами в электронных системах зажигания заменен прерыватель контактной системы?

  2. Как работает бесконтактная система зажигания с нерегулируемым временем накопления энергии и в чем ее недостаток?

  3. В чем преимущество бесконтактной система зажигания с регулированием времени накопления энергии и как работает ее электронная схема?

Источник: https://StudFiles.net/preview/2687892/page:11/

Контактно-транзисторная система зажигания

Что входит в устройство контактно-транзисторной системы зажигания?

Контактно-транзисторная система зажигания (рис.93) состоит из аккумуляторной батареи 1 напряжением 1.

2 В; зажима 2 стартера; включателя (замка) зажигания 3; добавочных резисторов 4, изготовленных из константа новой проволоки; транзисторного коммутатора ТК-102, включающего электролитический конденсатор 5; германиевого диода 8; транзистора 9; резисторов 6 и 10 сопротивлением 20 Ом, импульсного трансформатора с первичной 11 и вторичной 12 обмотками; стабилитрона 22; прерывателя с подвижным 14 и неподвижным 15 контактами и кулачковой муфтой 21; распределителя 16 с токоразносной пластиной 17; свечей зажигания 18; катушки зажигания 19 и помехоподавительного сопротивления 20.

Рис.93. Схема контактно-транзисторного зажигания.

Транзисторный коммутатор смонтирован в алюминиевом ребристом корпусе, установленном в кабине автомобиля, и имеет четыре зажима «Р», «К», «М» и один зажим без обозначения.

Зажим «М» надежно соединен с массой многожильным проводом; зажим «К» – с зажимом катушки зажигания; зажим без обозначения – с соответствующим зажимом этой же катушки зажигания и зажим «Р» – с подвижным контактом прерывателя.

Как работает контактно-транзисторная система зажигания?

Контактно-транзисторная система зажигания работает так. При выключенном зажигании или разомкнутых контактах прерывателя транзистор закрыт. С включением зажигания и при замкнутых контактах 14 и 15 (рис.

93) прерывателя образуется цепь тока управления транзистором: «+» батареи – зажим стартера 2 – включатель зажигания 3 – резисторы 4 – первичная обмотка катушки зажигания – зажим без обозначения транзисторного коммутатора – вторичная 12 обмотка импульсного трансформатора – резистор 10 – эмиттер – база транзистора – зажим 13, к которому подключена первичная 11 обмотка импульсного трансформатора – подвижный 14 – неподвижный 15 контакты прерывателя –  «масса» – «–» аккумуляторной батареи.

В результате прохождения тока управления через переход эмиттер – база транзистора сопротивление перехода эмиттер – коллектор снижается и транзистор открывается.

Образуется такая цепь рабочего тока низкого напряжения: «+» батареи – зажим стартера 2 – включатель зажигания 3 – резисторы 4 – первичная обмотка катушки зажигания – эмиттер – база – коллектор – зажим «М» транзисторного коммутатора – «масса» – «–» батареи.

Важно

Благодаря небольшому сопротивлению транзистора в первичной обмотке катушки зажигания создается сильное магнитное поле, что способствует получению более высокого (до 30 тыс. В) напряжения во вторичной обмотке.

При вращении коленчатого вала грань кулачковой муфты 21 воздействует на рычаг подвижного контакта 14, прерывая цепь тока управления, и транзистор закрывается, что ведет к прерыванию цепи рабочего тока низкого напряжения.

В это же время во вторичной обмотке 12 импульсного трансформатора индуктируется ЭДС взаимоиндукции, действие которой противоположно направлению рабочего тока низкого напряжения. В результате этого ускоряется закрывание транзистора.

При резком прерывании тока в первичной обмотке катушки зажигания ее магнитные силовые линии, исчезая, пересекают витки вторичной обмотки и в них индуктируется ток высокого напряжения (до 30 тыс. В). Этот ток проходит по проводу напряжения через помехоподавительное сопротивление 20 на центральную клемму распределителя 16. Далее токоразносной пластиной 17 подводится к боковому электроду и по проводу на свечи зажигания 18 воспламеняет горючую смесь и по «массе» на корпус 19 катушки зажигания и во вторичную обмотку катушки зажигания. Следовательно, ток высокого напряжения не проходит через транзистор, что предотвращает его пробой и повышает надежность работы системы зажигания.

Одновременно в первичной обмотке катушки зажигания теми же магнитными силовыми линиями индуктируется ток самоиндукции напряжением до 100 В, который может повредить (пробить) транзистор.

Поэтому параллельно первичной обмотке катушки зажигания последовательно включены диод 8 и стабилитрон 22, со встречным направлением прямых проводимостей. Диод 8 препятствует протеканию тока через стабилитрон, минуя первичную обмотку катушки зажигания.

Стабилитрон пропускает ток самоиндукции, если напряжение его превышает 100 В. В результате общее напряжение в цепи первичной обмотки катушки зажигания снижается.

В момент размыкания контактов прерывателя в первичной обмотке 11 импульсного трансформатора также индуктируется ЭДС самоиндукции. Она заряжает конденсатор 7, который затем разряжается на резистор 6, а он преобразует электрическую энергию в тепловую.

Совет

Электролитический конденсатор 5 включен параллельно генератору и аккумуляторной батарее и защищает транзистор от импульсных перенапряжений, возникающих в цепи генератор – батарея в случае выключения батареи, обрыва одной из фаз обмотки статора генератора переменного тока, обрыва провода, соединяющего корпуса генератора и регулятора напряжения. В этом случае конденсатор 5 будет заряжаться, что снизит напряжение в цепи приборов, предотвращая пробой транзистора.

Какие условия следует соблюдать при эксплуатации контактно-транзисторной системы зажигания?

Во время эксплуатации контактно-транзисторной системы зажигания необходимо тщательно контролировать чистоту контактов прерывателя, так как попадание масла на них или их окисление могут вызвать нарушение работы всей системы. Соединять с «массой» только «–» аккумуляторной батареи.

Не менять местами провода, подсоединенные к транзисторному коммутатору или к резисторам. Не замыкать накоротко резисторы. Следить и своевременно регулировать зазор между контактами прерывателя и электродами свечей зажигания. Сразу же после остановки двигателя выключить зажигание.

Разбирать транзисторный коммутатор только в специальной мастерской.

***
Проверьте свои знания и ответьте на контрольные вопросы по теме «Система электрического зажигания»

батарея, зажигание, зажим, катушка, контакт, напряжение, обмотка, ток, транзистор

Источник: http://avtomobil-1.ru/kontaktno-tranzistornaya-sistema-zazhiganiya.html

Ссылка на основную публикацию