Как работают дизельный, бензиновый и инжекторный двигатели

Инжекторный двигатель

Инжекторный двигатель — что мы о нем знаем? Именно им оснащается любая современная машина. Реализация ресурса такого двигателя внутреннего сгорания (ДВС) рассчитана на экономный расход топлива, минимизацию его выхлопа в окружающую среду. Проведем небольшой экскурс по изучению агрегата.

За счет чего он работает?

Инжекторные двигатели работают тактами; каждый такт обеспечивает операцию:

  1. Заполнение горючим цилиндров.
  2. Сжатие его поршнем для сгорания.
  3. Рабочий ход — получение механической энергии путем детонации горючего вещества.
  4. Вывод переработанного сырья в атмосферу.

Наиболее востребованными автопромом являются 4-х тактные ДВС на бензиновой тяге. На их примере изучим принцип работы инжекторного двигателя.

При первом такте поршень максимально опускается вниз — через клапан подается перемешанный с воздухом бензин. Далее, поршень поднимается до упора, закрывая клапан и сжимая смесь. После этого свеча отсекает искру — она запускает детонацию сдавленного вещества.

Повышение температуры в камере и образование газов продвигают поршень вперед, а коленвал за счет инерции возвращает его на верхнюю позицию. При высокой скорости оборотов давление нагнетается еще больше, открывается выходной клапан. Продукты переработки бензина устремляются к нему.

Обратите внимание

Для более рационального функционирования используется комплекс датчиков, которые определяют получаемую на механизмы нагрузку, рассчитывают порции компонентов детонирующей смеси для обеспечения движения с циклом, равным такту.

Программная «начинка» их устроена так, что каждый срабатывает параллельно режимам мотора, отслеживает изменения в циклах и подстраивается под них. Такая функциональность позволяет подстраивать расход горючего под индивидуальный стиль вождения, повысить КПД.

В чём особенности устройства?

Изучение конструкции позволит подробнее разобраться, как работает инжекторный двигатель. Компоненты, характерные для этого типа:

  • Блок электронного управления (ЭБУ);
  • Регулятор давления;
  • Форсунки;
  • Бензонасос;
  • Датчики.

Взаимодействие перечисленного: датчики получают данные о состоянии механики или процессах, их обрабатывает процессор и передает управляющие команды. Форсункам выделяется ограниченный заряд, который их открывает. Результат — смесь из топливного отдела попадает в отсек впускного коллектора.

Чтобы схема этого процесса стала более понятной, проведем краткий экскурс по устройству некоторых узлов, из которых состоит двигатель инжектор.

ЭБУ

Основная его функция — бесперебойно выдавать команды составляющим автомобиля на основании обработанной информации. В нее входят:

  • факторы окружающей среды (температура, влажность, пр.);
  • степень нагрузки на механику (при подъеме на горку, передвижение по плохой дороге, др.);
  • режим мотора (холостой/скоростной ход, учет нагрузки при переходе на полный привод, т. д.).

При несовпадениях исходной программе компьютер задает исполняющим элементам корректировки. Блок способен проводить диагностику.

Об отказе любого механизма-исполнителя, его некорректном функционировании водитель оповещается путем индикации CheckEngine на приборной панели.

Сведения об ошибках собираются в памятном отделе, что при серьезных поломках помогает их оперативному обнаружению и устранению.

Виды заложенных устройств памяти:

  • Однократно программируемое постоянное запоминающее (ППЗУ) — содержит базовый программный код («мозг» автомашины). Его чип находится на плате панели, при выходе из строя легко меняется новым. При любых сбоях вложенные коды остаются храниться на нем.
  • Оперативное запоминающее (ОЗУ) — временный резервуар, применяемый для обработки задач по текущему сеансу. Устройство впаяно к плате; по прекращению подачи электричества из аккумулятора вся информация с него стирается.
  • Электрически программируемое (ЭПЗУ) — содержит временные данные и кодировку средств защиты от угона. В качестве питания использует вшитый аккумулятор, подзаряжаемый при движении. Через него сравниваются вшитые коды электронной блокировки и те же параметры иммобилайзера. При их несовпадении запуск инжекторного двигателя невозможен.

Форсунки

Через них производится выплеск порций топливной массы в коллекторное и цилиндровое отделения, причем открытие/закрытие клапана в течение секунды повторяется многократно.

По способу аппаратного управления и используемого количества деталей подразделяют на категории:

  1. Дроссельный моновпрыск (TBI)— подача сырья для детонации осуществляется одной деталью. Подаваемая струя не синхронизируется со срабатыванием клапана впуска. Управляющие сигналы на форсуночное сообщение производятся из внутриколлекторного чипа. Принцип распространен на старых моторах 90-х годов выпуска.
  2. Впрыск с распределением (MFI) — используется во всех современных автомобилях с бортовым компьютером. Передача горючего происходит комплектно: одна форсунка — один цилиндр. Форсунковый блок крепится поверх коллектора, а весь процесс синхронизируется с ЦБУ, согласно с тем, как работает система зажигания инжекторного двигателя. При сравнении сводных характеристик предшественников — КПД увеличен до 10%.

MFI-элементы по подаче струи бывают: электрогидравлические, электромагнитные, пьезоэлектрические. Они применяются при распределении впрыска:

  • Одновременном (синхронное наполнение всех цилиндров);
  • Попарно-параллельном — одна пара поршней принимает нижнее положение, другая — верхнее. Залив топлива и вывод продуктов сгорания производятся так же;
  • Двухстадийном (фазовом)— передача горючего в камеры сгорания производится в две операции.
  • Непосредственном — применяется в конструкциях моторов, подразумевающих сжигание сверхобедненного кислородом состава.

Важный факт: технология TBI сегодня практически не распространена, так как она менее экономичная и ненадежная!

Каталитический нейтрализатор

Это устройство позволяет сократить в выводимых газах содержание веществ, как окиси углерода и азота, за счет преобразования их в углеводороды. Не управляется ЭБУ, но взаимодействует с центром обработки через датчик, определяющий процент кислорода в выхлопных скоплениях. При избыточной подаче горючего контроллер получает сведения от датчика и корректирует ее.

В нейтрализаторе установлены керамические элементы со встроенными катализаторами:

  • окислительными (платиновый и палладиевый);
  • восстановительным родиевым;
  • селективными;
  • накопительными.

На заметку: этилированный бензин губителен для работы нейтрализаторов, а заправочные вещества с высоким содержанием серы приведет в негодность элементы накопительной катализации!

Датчики

Слаженную работу всех механизмов инжекторных двигателей обеспечивают показания мини-приборов, закрепляемых на агрегатных исполнителях. Каждое устройство замеряет параметры контролируемого участка и передает их в ЭБУ.

Встроенные датчики ®:

  1. ДМРВ (R массового расхода воздуха) — крепится на входе в воздушный фильтр. Функционирует по принципу сравнения показаний. Через 2 нити платины поступает ток. Меняется сопротивление (зависит от температуры). При этом одна нить свободно обдувается, вторая — герметично укрыта. За счет появившейся разницы ЭБУ производит подсчет.
  2. ДАД (R абсолютного давления и температуры в двигателе) — комбинируется или ставится отдельно от предыдущего. Состоит из 2 камер: одна герметична (внутри вакуум), вторая подводится напрямую к камере коллекторного впуска. Промеж камер проходит диафрагма, закреплены пьезоэлементы, которые создают напряжение при ее движении.
  3. ДПКВ (R положения коленчатого вала) — устанавливается в виде магнитной гребенки на шкиве коленвала. Он обустроен 58 зубцами и 2 зазорами, равными шагу зуба. Зубцы движутся в медной обмотке, что при взаимодействии с намагниченным сердечником образует индукционное напряжение — оно зависит от скорости оборотов шкива.
  4. ДФ (R фаз) — содержит диск с катушкой и прорезь. Прорезь обращается к прибору — выходное напряжение уравнивается с нулем. Одновременно достигается верхняя мертвая точка сжатия в первом цилиндре. Благодаря этому, центральный блок выдает напряжение в нужный цилиндр для зажигания, управляет тактами.
  5. ДД (R детонации) — им обустроен блок цилиндров. В момент детонации по нему проходит вибрация. В основе передачи информации лежит генерация напряжения свободного тока — оно увеличивается при большей вибрации.
  6. ДПДЗ (R положения дроссельной заслонки) — при опорном напряжении в 5 V происходит его увеличение или падение, за счет изменения поворотного угла заслонки.
  7. ДТОЖ (R температуры охлаждающей жидкости).
  8. Датчик кислорода — для разных конструкций внедряется единично или парой. Снимает замеры свободного кислорода в продуктах выхлопа. Его функция позволяет ЭБУ определить: обогатить или обеднить топливную смесь.

Инжектор значительно лучше карбюратора. Чтобы в этом убедиться, рассмотрим сравнение схожих моторных конструкций в таблице:

Параметры агрегата Значение для карбюратора Значение для инжектора
наименование ВАЗ 21083
Объем (л) 1.5 1.5
Мощность (л. с./кВт) 69/51.5 78/56.2
Частота вращения вала (об/мин) 750-800 800-900
Бензин (октановое число) 92-95

Источник - http://AvtoDvigateli.com/vidy/benzinovyj/inzhektornyj.html

Как работают дизельный, бензиновый и инжекторный двигатели

Двигатель внутреннего сгорания – универсальный силовой агрегат, используемый практически во всех видах современного транспорта.

Три луча заключенные в окружность, слова «На земле, на воде и в небе» — товарный знак и девиз компании Мерседес Бенц, одного из ведущих производителей дизельных и бензиновых двигателей.

Устройство двигателя, история его создания, основные виды и перспективы развития – вот краткое содержание данного материала.

Немного истории

Принцип превращения возвратно-поступательного движения во вращательное, посредством использования кривошипно-шатунного механизма известен с 1769 года, когда француз Николя Жозеф Кюньо показал миру первый паровой автомобиль.

В качестве рабочего тела двигатель использовал водяной пар, был маломощным и извергал клубы черного, дурнопахнущего дыма.

Подобные агрегаты использовались в качестве силовых установок на заводах, фабриках, пароходах и поездах, компактные же модели существовали в виде технического курьеза.

Все изменилось в тот момент, когда в поисках новых источников энергии человечество обратило свой взор на органическую жидкость — нефть.

В стhемлении повысить энергетические характеристики данного продукта, ученные и исследователи, проводили опыты по перегонке и дистилляции, и, наконец, получили неизвестное доселе вещество – бензин.

Эта прозрачная жидкость с желтоватым оттенком сгорала без образования копоти и сажи, выделяя намного большее, чем сырая нефть, количество тепловой энергии.

Примерно в то же время Этьен Ленуар сконструировал первый газовый двигатель внутреннего сгорания, работавший по двухтактной схеме, и запатентовал его в 1880 году.

В 1885 году немецкий инженер Готтлиб Даймлер, в сотрудничестве с предпринимателем Вильгельмом Майбахом, разработал компактный бензиновый двигатель, уже через год нашедший свое применение в первых моделях автомобилей.

Важно

Рудольф Дизель, работая в направлении повышения эффективности ДВС (двигателя внутреннего сгорания), в 1897 году предложил принципиально новую схему воспламенения топлива.

Воспламенение в двигателе, названном в честь великого конструктора и изобретателя, происходит за счет нагревания рабочего тела при сжатии.

А в 1903 году братья Райт подняли в воздух свой первый самолет, оснащенный бензиновым двигателем Райт-Тейлор, с примитивной инжекторной схемой подачи топлива.

Как это работает

Общее устройство двигателя и основные принципы его работы станут понятны при изучении одноцилиндровой двухтактной модели.

Такой ДВС состоит из:

  • камеры сгорания;
  • поршня, соединенного с коленвалом посредством кривошипно-шатунного механизма;
  • системы подачи и воспламенения топливно-воздушной смеси;
  • клапана для удаления продуктов горения (выхлопных газов).

При пуске двигателя поршень начинает путь от верхней мертвой точки (ВМТ) к нижней (НМТ), за счет поворота коленвала. Достигнув нижней точки, он меняет направление движения к ВМТ, одновременно с чем проводится подача топливно-воздушной смеси в камеру сгорания.

Движущийся поршень сжимает ТВС, при достижении верхней мертвой точки система электронного зажигания воспламеняет смесь. Стремительно расширяясь, горящие пары бензина отбрасывают поршень в нижнюю мертвую точку. Пройдя определенную часть пути, он открывает выхлопной клапан, через который раскаленные газы покидают камеру сгорания.

Пройдя нижнюю точку, поршень меняет направление движения к ВМТ. За это время коленвал совершил один оборот.

Данные пояснения станут более понятными при просмотре видео о работе двигателя внутреннего сгорания.

Данный видеоролик наглядно показывает устройство и работу двигателя автомобиля.

Два такта

Основным недостатком двухтактной схемы, в которой роль газораспределительного элемента играет поршень, является потеря рабочего вещества в момент удаления выхлопных газов.

А система принудительной продувки и повышенные требования к термостойкости выхлопного клапана приводят к увеличению цены двигателя. В противном случае добиться высокой мощности и долговечности силового агрегата не представляется возможным.

Основная сфера применения подобных двигателей – мопеды и недорогие мотоциклы, лодочные моторы и бензокосилки.

Четыре такта

Описанных недостатков лишены четырехтактные ДВС, используемые в более «серьезной» технике. Каждая фаза работы такого двигателя (впуск смеси, ее сжатие, рабочий ход и выпуск отработанных газов), осуществляется при помощи газораспределительного механизма.

Разделение фаз работы ДВС очень условно.

Инерционность отработавших газов, возникновение локальных вихрей и обратных потоков в зоне выхлопного клапана приводит к взаимному перекрыванию во времени процессов впрыска топливной смеси и удаления продуктов горения.

Как результат, рабочее тело в камере сгорания загрязняется отработанными газами, вследствие чего меняются параметры горения ТВС, уменьшается теплоотдача, падает мощность.

Совет

Проблема была успешно решена путем механической синхронизации работы впускных и выпускных клапанов с оборотами коленвала. Проще говоря, впрыск топливно-воздушной смеси в камеру сгорания произойдет только после полного удаления отработанных газов и закрытия выхлопного клапана.

Но данная система управления газораспределением так же имеет свои недостатки. Оптимальный режим работы двигателя (минимальный расход топлива и максимальная мощность), может быть достигнут в достаточно узком диапазоне оборотов коленвала.

Читайте также:  Замена масла в гидроусилителе руля: частичная и полная

Развитие вычислительной техники и внедрение электронных блоков управления дало возможность успешно разрешить и эту задачу. Система электромагнитного управления работой клапанов ДВС позволяет на лету, в зависимости от режима работы, выбирать оптимальный режим газораспределения. Анимированные схемы и специализированные видео облегчат понимание этого процесса.

На основании видео не сложно сделать вывод, что современный автомобиль это огромное количество всевозможных датчиков.

Виды ДВС

Общее устройство двигателя остается неизменным достаточно долгое время. Основные различия касаются видов используемого топлива, систем приготовления топливно-воздушной смеси и схем ее воспламенения.
Рассмотрим три основных типа:

  1. бензиновые карбюраторные;
  2. бензиновые инжекторные;
  3. дизельные.

Бензиновые карбюраторные ДВС

Приготовление гомогенной (однородной по своему составу), топливно-воздушной смеси происходит путем распыления жидкого топлива в воздушном потоке, интенсивность которого регулируется степенью поворота дроссельной заслонки.

Все операции по приготовлению смеси проводятся за пределами камеры сгорания двигателя. Преимуществами карбюраторного двигателя является возможность регулировки состава топливной смеси «на коленке», простота обслуживания и ремонта, относительная дешевизна конструкции.

Основной недостаток – повышенный расход топлива.

Историческая справка. Первый двигатель данного типа сконструировал и запатентовал в 1888 году российский изобретатель Огнеслав Костович.

Оппозитная система горизонтально расположенных и двигающихся навстречу друг другу поршней, до сих пор успешно используется при создании двигателей внутреннего сгорания.

Самым известным автомобилем, в котором использовался ДВС данной конструкции, является Фольксваген Жук.

Бензиновые инжекторные ДВС

Приготовление ТВС осуществляется в камере сгорания двигателя, путем распыления топлива инжекторными форсунками. Управление впрыском осуществляется электронным блоком или бортовым компьютером автомобиля.

Мгновенная реакция управляющей системы на изменение режима работы двигателя обеспечивает стабильность работы и оптимальный расход топлива.

Недостатком считается сложность конструкции, профилактика и наладка возможны только на специализированных станциях технического обслуживания.

Дизельные ДВС

Приготовление топливно-воздушной смеси происходит непосредственно в камере сгорания двигателя. По окончании цикла сжатия воздуха, находящегося в цилиндре, форсунка проводит впрыск топлива.

Воспламенение происходит за счет контакта с перегретым в процессе сжатия атмосферным воздухом. Всего лишь 20 лет назад низкооборотистые дизеля использовались в качестве силовых агрегатов специальной техники.

Появление технологии турбонагнетания открыло им дорогу в мир легковых автомобилей.

Пути дальнейшего развития ДВС

Конструкторская мысль никогда не стоит на месте. Основные направления дальнейшего развития и усовершенствования двигателей внутреннего сгорания – повышение экономичности и минимизация вредных для экологии веществ в составе выхлопных газов. Применение слоистых топливных смесей, конструирование комбинированных и гибридных ДВС – лишь первые этапы долгого пути.

Источник - https://ZnanieAvto.ru/dvs/ustrojstvo-dvigatelya-vnutrennego-sgoraniya.html

Топливные системы бензиновых и дизельных двигателей

Топливная система — важнейшая часть автомобиля, которая служит для подачи топлива из бака в камеру сгорания двигателя.

Она состоит из множества элементов, предназначенных для транспортировки, фильтрации, учета, подготовки и отвода топлива.

В статье подробнее рассмотрим топливные системы бензиновых и дизельных двигателей, а также узнаем, что такое линия возврата топлива («обратка») и зачем она нужна.

Состав и принцип работы

Главная функция любой топливной системы — это подача необходимого количества топлива из бака в камеру сгорания в определенный момент времени. Функционально она разделяется на две основных системы:

  • транспортировка топлива, его фильтрация и создание давления в системе — выполняется механическими и гидравлическими устройствами;
  • расчет количества и момента впрыска топлива, а также распределение его по цилиндрам — осуществляется электронными устройствами.

Топливная система автомобиля

В состав топливной системы входят следующие элементы:

  • Бак — герметичная емкость для хранения топлива.
  • Трубопроводы (прямой и обратный) — трубки и гибкие шланги, по которым осуществляется транспортировка топлива.
  • Фильтры (грубой и тонкой очистки) — выполняют очистку от механических загрязнений.
  • Регулятор давления — необходим для обеспечения заданного уровня давления.
  • Насос — как правило, погружной, приводимый в движение электродвигателем.
  • ТНВД — для систем непосредственного впрыска (дизельных двигателей).
  • Топливные форсунки.

Виды топливных систем бензиновых двигателей

В зависимости от типа бензинового двигателя, различают карбюраторную и инжекторную топливные системы. Они имеют отличия в конструкции и рабочих параметрах.

Карбюраторный двигатель

Работа карбюраторной системы осуществляется по следующему принципу:

  • Насос всасывает топливо из бака. При этом он обеспечивает невысокое давление, достаточное лишь для подачи топлива.
  • Двигаясь по трубопроводу, топливо проходит фильтрацию.
  • В специальной камере (карбюраторе) горючее смешивается с воздухом.
  • Готовая смесь подается напрямую в цилиндры двигателя, где она сгорает.

Инжекторный двигатель

Топливная система инжекторного двигателя отличается тем, что имеет систему впрыска, принудительно нагнетающую топливо в камеру сгорания. Насос такой топливной системы создает более высокое давление, зависящее от типа впрыска:

  • С индивидуальными форсунками для каждого цилиндра (распределенный впрыск). Создаваемое насосом давление в топливной рампе составляет от 2,5 бар до 4 бар.
  • С одной форсункой (моновпрыск), подающей топливо для всех цилиндров двигателя. Простая схема, которая в современном автомобилестроении практически не используется из-за низкой экономичности.
  • Непосредственный впрыск. Форсунки установлены в головке блока цилиндров, что позволяет выполнять прямой впрыск топлива в цилиндры. В этом случае рабочее давление составит около 155 бар.

Источник - https://TechAutoPort.ru/dvigatel/toplivnaya-sistema/toplivnye-sistemy-benzinovyh-i-dizelnyh-dvigateley.html

Вся правда о том, как работает инжекторный двигатель (система впрыска топлива)

С целью сокращения вредных выбросов и повышения экономичности двигателей автомобильная топливная система в последние годы серьезно изменилась. Например, в США от карбюраторов отказались ещё в 1990 году. Системы впрыска топлива появились ещё в середине ХХ века, а на серийных автомобилях европейских производителей их начали применять примерно с 1980-х.

На сегодняшний день все новые автомобили оснащаются именно инжекторными двигателями. В этой познавательной статье мы рассмотрим принцип работы инжектора и его устройство. Вы сможете узнать, как топливо попадает в цилиндр двигателя. Устройство двигателя с системой впрыска – очень актуальная тема для современного автолюбителя, поэтому устраивайтесь поудобнее и начинаем!

Карбюратор «сдаёт позиции»

После появления двигателя внутреннего сгорания карбюратор использовался для подачи топлива в двигатель. В такой технике как бензопилы и газонокосилки это устройство применяется до сих пор. Но в процессе эволюции автомобиля карбюратору становилось всё сложнее и сложнее удовлетворять многим требованиям к эксплуатации.

Например, для того чтобы соответствовать ужесточающимся экологическим нормам были введены каталитические нейтрализаторы (катализаторы). Катализатор эффективен лишь в случае тщательного контроля топливно-воздушной смеси. Кислородные датчики (как их проверяют мы уже писали – https://avtopub.

com/proverka-kislorodnogo-datchika-lyambda-zonda-svoimi-silami/) отвечают за контроль количества кислорода в выхлопных газах. Эта информация используется и электронным блоком управления двигателем (ЭБУ) для регулировки пропорции воздух/топливо в режиме реального времени.

Обратите внимание

В итоге получается замкнутая система управления, которую невозможно было реализовать с использованием карбюраторов. В течение короткого периода времени выпускались карбюраторы с электронным управлением, но они были ещё более сложными, чем чисто механические устройства.

Сначала карбюраторы были заменены системой впрыска топлива в корпусе дроссельной заслонки (также известна как одноточечная система впрыска или система центрального впрыска топлива). В них форсунки были расположены в корпусе дроссельной заслонки. Это было простое решение для замены карбюратора, поэтому автопроизводителям не пришлось вносить изменения в конструкцию двигателей.

Со временем, в процессе появления новых двигателей, система центрального впрыска топлива была заменена многоточечной системой впрыска топлива (также известна как система последовательного впрыска).

В этих системах используется отдельная топливная форсунка для каждого цилиндра. Как правило, они расположены так, чтобы распылять топливо прямо на впускной клапан. Эти системы обеспечивают более точное дозирование топлива и быструю реакцию.

Пришло время подробнее изучить принцип работы инжектора.

Когда вы давите на газ

Педаль газа в вашем автомобиле подключена к дроссельной заслонке. Речь идет о клапане, который регулирует количество воздуха, поступающего в двигатель. Так что педаль газа на самом деле является педалью воздуха.

Когда вы нажимаете на педаль газа, дроссельная заслонка открывается больше, в результате чего двигатель получает больше воздуха.

Блок управления двигателем (ЭБУ, компьютер, управляющий всеми электронными компонентами двигателя) «замечает» открытую дроссельную заслонку и увеличивает подачу топлива для приготовления оптимальной топливно-воздушной смеси.

Очень важно, чтобы подача топлива увеличивалась сразу после открытия дроссельной заслонки. В противном случае, некоторая часть воздуха окажется в цилиндрах без достаточного количества топлива.

Датчики контролируют содержание кислорода в выхлопных газах, а также количество воздуха, поступающего в двигатель. ЭБУ использует эти данные для максимально точного выбора соотношения воздуха и топлива. Как работает инжектор на современных автомобилях?

Форсунка

Топливная форсунка (инжектор) – это клапан с электронным управлением. Подачу топлива к этому клапану обеспечивает топливный насос. Форсунка может открываться/закрываться много раз в секунду.

Когда форсунка находится под напряжением, электромагнит перемещает поршень, открывающий клапан, в результате чего происходит впрыск топлива под давлением через крошечное сопло. Насадка предназначена для распыления топлива. Появляется мелкий туман, который легко сгорает.

Количество топлива, которое подается в двигатель, зависит от того, сколько времени форсунка остается в открытом положении. Данный показатель называют длительностью или шириной импульса, он управляется ЭБУ.

Важно

Форсунки установлены во впускном коллекторе таким образом, чтобы распылять топливо прямо на впускные клапана. Трубка, которая поставляет топливо к каждой из форсунок под определенным давлением, называется топливной рампой.

Для того чтобы определить оптимальное количество топлива, блок управления двигателя получает сигналы от множества датчиков. Рассмотрим самые важные из них.

Устройство инжекторного двигателя – основные датчики

Для выбора оптимального количества топлива в различных условиях эксплуатации ЭБУ двигателя следит за показаниями различных датчиков. Вот лишь несколько основных:

  • Датчик массового расхода воздуха (ДМРВ). Сообщает блоку управления массу воздуха, поступающего в двигатель.
  • Датчик (-и) кислорода (лямбда-зонд). Контролирует содержание кислорода в выхлопных газах. С помощью полученной от него информации ЭБУ может выявить богатую или бедную топливную смесь и внести соответствующие коррективы.
  • Датчик положения дроссельной заслонки. Следит за положением дроссельной заслонки (она влияет на подачу воздуха в двигатель), благодаря чему блок управления может оперативно реагировать на изменения, увеличивая либо сокращая расход топлива по мере необходимости.
  • Датчик температуры охлаждающей жидкости. Помогает ЭБУ определить, когда двигатель достиг оптимальной рабочей температуры.
  • Датчик напряжения. Следит за напряжением бортовой сети автомобиля. В зависимости от показаний датчика блок управления может увеличить число оборотов холостого хода двигателя, если напряжение падает (такое бывает при высоких электрических нагрузках).
  • Коллекторный датчик абсолютного давления. Анализирует давление воздуха во впускном коллекторе. Количество воздуха, поступающего в двигатель, является хорошим показателем того, сколько энергии он вырабатывает. Чем больше воздуха поступает в двигатель, тем ниже давление в коллекторе. Этот показатель используется для определения количества производимой энергии.
  • Датчик скорости вращения коленчатого вала. Скорость вращения коленвала – один из факторов, влияющих на расчет требуемой длительности импульса.

Существует два основных типа управления многоточечными системами впрыска: топливные форсунки могут открываться одновременно или каждая из них может открываться только перед открытием впускного клапана соответствующего цилиндра (это называется последовательный многоточечный впрыск топлива).

Преимущество последовательного впрыска топлива заключается в том, что система может реагировать на любые действия водителя быстрее, поскольку с момента выполнения действия она ждет лишь очередного открытия впускного клапана. Системе не нужно ждать полного вращения двигателя. Разобраться в работе инжектора мы смогли, но кто всем этим «руководит»?

Читайте также:  Номера регионов россии на автомобилях

Управление работой двигателя

Алгоритмы, управляющие двигателем, являются довольно сложными. Существует множество требований, которым силовой агрегат должен удовлетворять. Например, это касается показателя вредных выбросов или требований топливной экономичности.

Блок управления двигателем использует формулу и множество таблиц соответствия для установки длительности импульса в определенных условиях эксплуатации. Формула представляет собой сочетание многих факторов, умноженных друг на друга.

Мы рассмотрим упрощенную формулу определения длительности импульса топливной форсунки.

В этом примере наша формула будет состоять лишь из трех показателей, в то время как в реальности обычно учитывается свыше сотни параметров.

Длительность импульса = (Длительность базового импульса) x (Фактор A) x (Фактор B)

Для расчета длительности импульса электронный блок сначала выполняет поиск длительности базового импульса в соответствующей справочной таблице.

Базовая длительность импульса – это функция от частоты вращения двигателя (RPM) и нагрузки (она вычисляется из абсолютного давления в коллекторе).

Например, частота вращения двигателя 2000 оборотов в минуту, а показатель нагрузки равен 4. В таблице необходимо найти число в месте пересечения показателей 2000 и 4. Получается 8 миллисекунд.

Частота вращения двигателя Нагрузка
1 2 3 4 5
1,000 1 2 3 4 5
2,000 2 4 6 8 10
3,000 3 6 9 12 15
4,000 4 8 12 16 20

В следующих примерах А и В представляют собой параметры, которые блок управления получает от датчиков.

Допустим, что А – это температура охлаждающей жидкости, а B – уровень содержания кислорода.

Если температура охлаждающей жидкости равна 100, а уровень кислорода – 3, справочные таблицы свидетельствуют о том, что фактор А = 0,8, а фактор B = 1,0.

A Фактор A B Фактор B
1.2 1.0
25 1.1 1 1.0
50 1.0 2 1.0
75 0.9 3 1.0
100 0.8 4 0.75

Таким образом, поскольку нам известно, что длительность базового импульса – это функция от нагрузки и частоты вращения двигателя, а длительность импульса = (длительность базового импульса) x (фактор A) x (фактор B), общая длительность импульса в нашем примере равна:

8 х 0,8 х 1,0 = 6,4 мс

На этом примере видно, как система управления выполняет настройку. Так как параметр В отображает содержание кислорода в выхлопных газах, согласно данным с таблицы, можно сделать вывод, что выхлопные газы содержат слишком много кислорода, в результате чего ЭБУ сокращает подачу топлива.

Реальные системы управления учитывают свыше 100 параметров, для каждого из которых составлена собственная таблица соответствия.

Совет

Некоторые параметры даже корректируются с течением времени с целью компенсации изменений производительности компонентов, к примеру, каталитического нейтрализатора (о проверке катализатора читайте по ссылке).

И в зависимости от количества оборотов двигателя, блок управления может выполнять эти расчеты более 100 раз в секунду.

Если наша статья о том, как работает инжектор, и какие существуют системы впрыска топлива, вам понравилась, поделитесь ссылкой с друзьями в социальных сетях, используя соответствующие кнопочки ниже. Спасибо за внимание, оставайтесь с нами!

Источник: https://avtopub.com/kak-rabotaet-inzhektornyiy-dvigatel/

Как работает инжекторный двигатель?

Инжекторный двигатель (двигатель с инжектором, англ. electronic fuel injection engine) — современный тип ДВС, оснащенный инжекторной системой топливного впрыска, которая пришла на смену моторам с карбюратором.

Сегодня новые бензиновые автомобили оснащаются исключительно инжектором, так как данное решение способно обеспечить силовой установке необходимое соответствие строгим нормам касательно экономичности и токсичности отработавших газов.

Карбюратор проигрывает инжектору по общим показателям эффективности, так как инжекторные двигатели стабильнее работают, автомобиль получает улучшенную динамику разгона. Инжекторный агрегат потребляет меньше топлива, содержание вредных веществ в выхлопе снижается, так как топливо сгорает более полноценно.

Управление системой полностью автоматизировано (в отличие от карбюратора), то есть не требует ручной подстройки во время эксплуатации. Что касается дизельных двигателей, система впрыска дизтоплива на таких моторах имеет ряд конструктивных отличий, хотя общий принцип работы инжектора на дизеле остается похожим на бензиновые аналоги.

Чем отличается инжекторный двигатель от карбюраторного

Инжектор представляет собой принципиально другой способ подачи топлива в камеру сгорания по сравнению с карбюратором. Другими словами, в инжекторном моторе наибольшие конструктивные изменения коснулись системы питания и топливоподачи.  В карбюраторном двигателе бензин смешивается с определенной частью воздуха во внешнем устройстве (карбюраторе).

После образовавшаяся топливно-воздушная смесь всасывается в цилиндры двигателя. Инжекторный двигатель имеет специальные инжекторные форсунки, которые дозировано впрыскивают горючее под давлением, после чего происходит смешение порции топлива с воздухом.

Если сравнивать эффективность подачи горючего инжектором и карбюратором, мотор с инжектором оказывается до 15% мощнее. Также отмечается существенная экономия топлива на разных режимах работы двигателя.

Разновидности инжекторов

Инжекторные системы топливного впрыска делятся на несколько подвидов:

  • одноточечный впрыск (моновпрыск);
  • распределенный впрыск;
  • прямой (непосредственный) впрыск;

Такое деление напрямую зависит от общего количества установленных форсунок, а также от места впрыска самого топлива. Одноточечная система является самой ранней разработкой и предполагает наличие только одной инжекторной форсунки во впускном коллекторе. Другими словами, форсунка одна для всех цилиндров двигателя. Данное решение имеет ряд недостатков, что и привело к ее быстрому исчезновению.

Следующим витком развития инжектора после моновпрыска стал распределенный впрыск, что означает наличие коллектора и отдельных форсунок, которые устанавливаются над впускным клапаном каждого цилиндра. Непосредственный впрыск топлива является новейшей инжекторной системой.

Принцип работы заключается в том, что форсунка устанавливается так, чтобы подавать топливо прямо в цилиндр двигателя (непосредственно в камеру сгорания), а не в коллектор. Местом расположения форсунок в этой системе стали головки цилиндров. Данная система в большой мере напоминает принцип топливоподачи и смесеобразования в дизельных двигателях.

Обратите внимание

Также каждая из систем дополнительно делится по типу впрыска. Что касается распределенного впрыска, такое решение может быть одновременным (все форсунки впрыскивают горючее). Также впрыск может быть попарно-параллельным (форсунки открываются парами), когда одна форсунка начинает открытие перед впрыском топлива, а другая перед тактом выпуска.

Также отмечается фазированный впрыск (форсунка открывается перед тактом впуска) и прямой впрыск непосредственно в цилиндр.

Как устроен и работает инжекторный двигатель?

Устройство инжектора предполагает в основе наличие следующих базовых компонентов системы:

  • электронный блок управления (ЭБУ);
  • электробензонасос;
  • инжекторные форсунки;
  • топливная рампа с регулятором давления;
  • электронные датчики температуры, угла открытия дроссельной заслонки ДПДЗ, ДПКВ, ДМРВ и т.д.

Для лучшего понимания принципа работы инжектора давайте поверхностно рассмотрим, как компоненты системы взаимодействуют между собой на примере распространенного типа инжекторных двигателей с многоточечным распределенным впрыском.

После поворота ключа зажигания питание подается на электрический бензонасос, который находится в топливном баке и погружен в горючее. Указанный насос подает топливо в топливную магистраль под определенным давлением.

Инжекторные форсунки установлены в топливной рампе (рейке), через которую реализован подвод топлива к форсункам, а также осуществлена фиксация самих форсунок на впускном коллекторе. В рампе также установлен регулятор давления топлива, который служит для поддержания разницы между давлением воздуха во впуске и в самих инжекторах.

Благодаря установленным датчикам электронной системы управления двигателем (ЭСУД) контроллер ЭБУ получает информацию, на основании которой удается синхронизировать впрыск в соответствии с режимами и условиями работы ДВС.

Блок управления получает показания от датчика температуры двигателя, кислородного датчика, датчика детонации, датчика положения распердвала (датчика Холла) и датчика коленвала. Так удается скорректировать количество подаваемого топлива в каждый цилиндр, гибко и динамично изменять состав топливно-воздушной смеси и т.д.

Если сказать иначе, для точного впрыска топлива необходимо подать горючее на форсунки под давлением, которое создает бензонасос в бензобаке. Далее ЭБУ посылает на форсунки управляющие импульсы.

Данные импульсы заставляют форсунку открываться на нужный промежуток времени, который зависит от конкретного режима работы двигателя, нагрузки на мотор, степени нажатия на педаль газа и ряда других факторов. Информация о продолжительности импульсов на форсунки и нужном количестве топлива во время впрыска рассчитывается ЭБУ с учетом показаний от электронных датчиков.

Важно

Датчики фиксируют различные изменения в работе двигателя и меняющиеся условия, постоянно передавая сигналы на блок управления. Данная схема позволяет затрачивать строго определенное количество топлива во время запуска, прогрева, работы на холостых оборотах, спокойной или динамичной езды и т.д.

Указанная точность во время дозирования горючего возможна только благодаря работе управляющей электроники автомобиля в виде совокупности датчиков и ЭБУ двигателем. В блоке управления прошиты микропрограммы, а сама работа основывается на так называемых топливных картах.

Датчики непрерывно подают информацию о режиме работы двигателя, о скорости движения ТС и т.д. Контроллер получает и обрабатывает данные, после чего определяет необходимое количество впрысков топлива и их продолжительность по времени. Любые изменения в работе ДВС считываются датчиками и заставляют ЭБУ динамично вносить коррективы в работу инжектора.

Выдающаяся экологичность инжектора стала возможной благодаря наличию кислородного датчика (лямбда зонда). Указанный датчик находится в выпускной системе и «оценивает» состояние выхлопных газов.

На основании его показаний ЭБУ обедняет или обогащает топливно-воздушную смесь (изменяет соотношение количества воздуха и топлива в составе рабочей смеси) во время работы двигателя в большинстве стандартных режимов.

Преимущества и недостатки инжекторных двигателей

Если сравнивать инжектор с карбюратором, тогда первое решение удобнее эксплуатировать, но определенно дороже и сложнее ремонтировать. Простой карбюратор представляет собой механическое устройство, которое требует периодического обслуживания.

Двигатели с карбюратором сильнее коксуются, могут с трудом запускаться в холодное время года, перерасходуют горючее, также мотор может нестабильно работать в сильную жару и т.д.

Карбюратор имеет меньший ресурс по сравнению с инжектором. По этой причине карбюратор нужно постоянно чистить, промывать и подстраивать.

Совет

Неоспоримым плюсом карбюратора является его простота и неприхотливость к качеству топлива, благодаря чему научиться ремонтировать и настраивать карбюратор своими руками может практический каждый автовладелец у себя в гараже.

В случае с инжекторными ДВС главными плюсами являются: экономичность, легкий запуск двигателя и стабильность работы мотора в любых условиях, а также низкий расход топлива. Мотор с инжектором лучше реагирует на педаль газа, свечи зажигания не так часто и сильно заливает бензином, двигатель меньше подвержен коксованию.

При этом определить неисправность инжектора в случае неисправности бывает намного сложнее.

Частые неисправности инжектора

Так как инжектор является сложной многокомпонентной системой, со временем отдельные элементы могут выходить из строя. Главной задачей инжектора является максимально возможная эффективность сгорания топлива, которая достигается благодаря поддержанию строго определенного состава рабочей смеси топлива и воздуха.

1).

В результате любой сбой в работе электронных датчиков приводит к дисбалансу в работе всей инжекторной системы, могут плавать обороты на холостом ходу или в движении, двигатель может троить или не заводиться, отмечается изменение цвета выхлопа и т.д. В отдельных случаях ЭБУ может перевести мотор в аварийный режим. Силовой агрегат в такой ситуации не набирает обороты, на приборной панели горит «check» и т.п.

2). Еще одной причиной неисправностей инжектора является загрязнение фильтрующих элементов в системе топливоподачи или самих инжекторных форсунок в результате использования бензина низкого качества. Для поддержания работоспособности топливный фильтр нужно своевременно менять.

Не меньше внимания, особенно на автомобилях с пробегом более 50-70 тыс. км, заслуживает сетка-фильтр бензонасоса. Указанную сеточку бензонасоса рекомендуется менять или чистить.

Также желательно один раз в несколько лет мыть топливный бак параллельно замене или очистке указанной сетки-фильтра грубой очистки топливного насоса. Отметим, что важно определять и устранять неисправность инжектора своевременно, так как сбои в его работе могут существенно ухудшить общее состояние ДВС и привести к другим поломкам.

Что касается засорения топливных форсунок, в этом случае двигатель хуже заводится, теряет мощность и начинает расходовать больше топлива.

Нарушение формы факела распыла топлива (особенно в моторах с прямым впрыском) приводит к локальным перегревам, детонации двигателя, прогарам клапанов и т.д.

Читайте также:  Устройство гидравлического привода сцепления

3). Также форсунки могут «лить» топливо, то есть не закрываться после прекращения импульса от ЭБУ. В этом случае избытки топлива попадают в камеру сгорания, затем могут проникать в выпускную систему и в систему смазки двигателя через неплотности в местах установки поршневых колец.

В таких ситуациях сильно страдает весь двигатель, так как бензин разжижает масло и смазка нагруженных деталей ухудшается. Наличие топлива в выхлопной системе выводит из строя каталитический нейтрализатор (катализатор), который очищает отработавшие газы от вредных соединений.

Для предотвращения неисправностей инжектора форсунки необходимо периодически очищать. Дело в том, что наличие фракций и примесей в бензине постепенно загрязняет инжекторы, что и снижает их производительность, а также нарушает качество распыла топлива. Почистить форсунки можно двумя способами: со снятием или прямо на машине.

Обратите внимание

Процедура очистки инжекторных форсунок на автомобиле предполагает то, что через инжекторы пропускается специальная промывочная жидкость для чистки инжектора. Способ заключается в том, что от топливной рампы отсоединяется топливная магистраль, после чего вместо бензонасоса в систему начинает качать промывочную жидкость специальный компрессор вместо бензонасоса.

Источник: https://v-mireauto.ru/kak-rabotaet-inzhektornyj-dvigatel/

Как правильно эксплуатировать двигатель

Если вы найдете ошибку в тексте, выделите её мышью и нажмите Ctrl+Enter. Спасибо.

Сегодня мы затроним очень актуальную тему: правильная эксплуатация двигателя.

Ведь ни для кого не секрет, что один из самых дорогостоящих ремонтов в автомобиле считается ремонт двигателя.

И от того на сколько правильно к его эксплуатации подходит владелец транспортного средства будет зависеть насколько часто его кошелек будет избавляться от денежных знаков.

Сравнение двигателя в автомобиле с сердцем у человека – это вовсе не преувеличение. Именно двигатель берет на себя главные функции и создает тяговое усилие транспортного средства.

Неисправности и сбои в работе силового узла неизбежно приводят к более серьезным проблемам, а иногда и полному обездвиживанию авто.

Так как же правильно эксплуатировать двигатель? Каким моментам уделить внимание?

Давайте разберемся.

Общие рекомендации

Надежность и ресурс двигателя зависит от множества факторов, а именно от условий эксплуатации, качества моторного масла и топливной смеси, очистки воздуха и так далее. При этом рецепта «бессмертия» мотора не существует. Есть только рекомендации, позволяющие существенно продлить его ресурс.

Итак, при эксплуатации двигателя следуйте таким советам.

Масла

Заливайте в силовой узел только качественное масло, следите за его уровнем и своевременно производите замену.

У каждого производителя есть свои рекомендации, но в среднем меняйте масло каждые 7-8 тысяч километров, в крайнем случае 10 000.

При выборе смазывающего состава обращайте внимание на его тип и индекс вязкости по SAE.

К примеру, хороший вариант – синтетическое или полусинтетическое масло 10W40.

Важно

Не забывайте обращать внимание на назначение масла. Если его можно лить только в дизельный мотор, то на этикетке будет красоваться слово «diesel».

Читайте подробнее: Какие масла нужно заливать в двигатель.

Топливо

Помните о низком качестве бензина (солярки) на заправках и своевременно меняйте топливный фильтр, не забывайте про адсорбер.

Время от времени сливайте накопившийся отстой. Если этого не сделать, то проблемы будет испытывать вся топливная система по причине высокого гидравлического сопротивления.

Идеальный вариант – хотя бы дважды в год снимать емкость для топлива и хорошенько ее чистить.

Читайте подробнее: Очистка топливной системы автомобиля.

Ремень ГРМ

Время от времени осматривайте состояние ремня ГРМ и своевременно производите замену.

Даже если ремень работает, «как часы», безжалостно меняйте его через 60 тысяч километров.

В противном случае вы рискуете своим двигателем и еще большими затратами.

Читайте подробнее: Замена ремня ГРМ ВАЗ-2109, Hyundai Accent своими руками.

Запчасти

Покупайте только качественные запчасти. Не экономьте на своем авто и старайтесь ставить только оригинальные детали.

Во-первых, это повышает ресурс двигателя, а во-вторых, освобождает от дополнительных расходов в будущем, ведь некачественный узел может «потянуть» за собой другие детали или же сам выйдет из строя раньше времени.

Читайте по теме: Как покупать запасные части правильно.

Прогрев автомобиля

Старайтесь все-таки прогревать автомобиль зимой (хотя бы 1-2 минуты). Как только звук мотора становится более-менее ровным, можно отправляться в путь.

Мы настоятельно рекомендуем установить на автомобиль подогреватель тосола.

Кроме этого, не допускайте повышения оборотов выше четырех тысяч. Такая нагрузка негативно сказывается на двигателе и снижает его ресурс.

Как ездить

Объезжайте лужи, если есть такая возможность, или проезжайте их на минимальной скорости. Если «залететь» в воду, то есть высокий риск гидроудара.

Да и для ходовой такой стиль езды будет очень вреден, ведь вы не знаете какая глубина этой лужи поэтому появляется большая вероятность вообще остаться без колес.

Будьте внимательны

Проявляйте к двигателю максимальное внимание. Перед тем как заводить мотор, всегда проверьте уровни масла и охлаждающей жидкости. При этом никогда не доливайте холодную ОЖ в раскаленную систему.

Учтите, что разница температур должна быть не больше 15 градусов Цельсия. Особое внимание уделяйте герметичности всех систем.

Отдельно выделим рекомендации для инжекторного двигателя.

  1. При пуске автомобиля с инжектором не нажимайте на педаль газа. Здесь подкачка топлива производится автоматически.
  2. Чтобы просушить свечи, достаточно открыть заслонку дросселя и прокрутить коленвал.
  3. Не допускайте полного опустошения бензобака, в противном случае инжектор может выйти из строя.
  4. Следите за состоянием и уровнем заряда АКБ. Низкое напряжение может стать причиной поломки дорогостоящей системы.

Секреты эксплуатации дизельного мотора

Приведенные выше советы в равной степени можно отнести как к бензиновым, так и дизельным моторам. Но некоторые особенности все-таки имеются.

К примеру, дизельные автомобили требуют большего внимания от автолюбителей (особенно в зимний период).

При эксплуатации «дизеля» зимой учтите несколько простых советов.

Опасность заводки с буксира

Не заводите автомобиль с буксира, ведь это может стать причиной поломки двигателя.

К примеру, если в баке залита летняя солярка, а на улице минусовая температура, то запуск мотора вряд ли будет успешен.

Дизельное топливо уже при пяти градусах мороза превращается в кристаллы, а само топливо теряет свое главное свойство – текучесть.

В дизельных двигателях роль смазки выполняет топливо, а если полноценной смазки нет, то узлы работают на «сухую». Итог – серьезные поломки.

Поэтому следите за правильной плотностью дизельного топлива.

Аккумуляторы

Обратите внимание на источник питания. Дизельные моторы из-за большей степени сжатия нуждаются в мощном аккумуляторе. Вот почему для дизелей рекомендуются АКБ с пусковым током не менее 320 А.

Кроме этого, источник питания, прослуживший больше 3-х лет лучше заменить. При этом выкидывать его также не стоит – отдайте (продайте) АКБ владельцу машины с бензиновым мотором.

Особое внимание уделяйте состоянию клемм на стартере и аккумуляторе – их необходимо зачищать.

При снижении температуры емкость АКБ уменьшается, поэтому дополнительное сопротивление только ухудшит положение.

Идеальный вариант – смазать клеммы специальным пластичным составом, который защитит металл от появления налета и соли на зимних дорогах.

А лучше научиться подбирать аккумулятор по марке автомобиля.

Следите за выхлопом

Если летом при работе дизельного мотора был заметен явный дымок, то проверьте угол опережения на впрыск топлива.

При отсутствии навыков регулировки лучше не рисковать и обратиться к профессионалам.

Или узнайте, что делать если появился дым из выхлопной трубы.

Снимайте лишнее

Специальную сетку с заборника (она установлена в топливном баке) лучше убрать. Практика показала, что именно эта сетка – главная причина появления пробок и проблем с пуском мотора.

Вот эта сетка перестала полностью пропускать топливо.

Правильно выбирайте масло

Автомобили с пробегом более 100 тысяч километров часто «болеют» снижением компрессии.

Причина – чрезмерный износ гильзы цилиндров и поршневых колец. Вот почему при снижении температуры ниже 25 градусов Цельсия лучше отдавать предпочтение маслу со сниженной степенью вязкости.

Поэтому нужно уметь отличать качественные масла от подделки.

Проверяйте свечи накаливания

Для дизельного мотора сложности начинаются уже с 5 градусов тепла и ниже. До этого мотор еще можно завести без работающих свечей накаливания.

При большем похолодании уже одной неисправной свечи достаточно для неуспешного пуска.

Чтобы избежать проблем в холода, проводите диагностику свечей накаливания еще до зимы. Если это необходимо, производите замену.

Секреты эксплуатации двигателя с турбиной

Наличие турбины – это не только резвость и превосходная динамика двигателя, но и большая ответственность для владельца авто.

Машины с турбиной требуют особой заботы от автолюбителя.

К примеру, есть более жесткие требования к качеству масла. Правильный выбор смазывающего состава позволяет повысить моторесурс, как минимум, вдвое.

Еще один важный момент – своевременная проверка и замена фильтров (масляного и воздушного).

Не ждите, пока откатаете километраж, рекомендованный производителем – меняйте узлы немного раньше.

Но и это еще не все.

Чтобы продлить жизнь турбированного мотора, соблюдайте следующие рекомендации:

  • после запуска двигателя дайте ему прогреться в течение минуты. Конечно, рабочее давление в системе достигается уже через 2-3 секунды, а вот на разгон движущихся элементов турбины необходимо большее время. Если сразу давать газ мотору, который только завелся, то уже через несколько лет, а то и месяцев можно попрощаться с турбокомпрессором. Причина в том, что узел попросту не успевает смазаться и вращается «на сухую»;
  • отъездив на машине в активном режиме, старайтесь не глушить мотор сразу после остановки. Дайте ему поработать какое-то время (3-5 минут). Это позволяет свести к минимуму резкие перепады температур в двигателе и исключить разрушительные переходные процессы;
  • не держите турбированный мотор на холостых оборотах больше 20 минут. В таком режиме есть риск появления течи масла в местах соединения турбины;
  • следите за качеством масла и своевременно производите его замену;
  • старайтесь не форсировать обороты до тех пор, пока температура двигателя не достигнет отметки в 50 градусов Цельсия. Данное требование обязательно соблюдать в условиях минусовых температур.

Не выполнение этих рекомендаций приведет к быстрому выходу из строя турбины и ремонту или даже к полной ее замене.

Вывод

Каким бы ни был двигатель, он требует ухода и заботы от своего владельца.

Ответственный подход в вопросе эксплуатации, своевременная замена неисправных запчастей, правильный выбор расходных материалов, лояльный режим вождения – все это способствует продлению ресурса двигателя и экономии ваших средств.

Если в статье есть видео и оно не проигрывается, выделите любое слово мышью, нажмите Ctrl+Enter, в появившееся окно введите любое слово и нажмите “ОТПРАВИТЬ”. Спасибо.

ПОДЕЛИТЬСЯ НОВОСТЬЮ С ДРУЗЬЯМИ:

Источник: https://AutoTopik.ru/sovet/858-kak-pravilno-ekspluatirovat-dvigatel.html

Ссылка на основную публикацию
Adblock
detector