Экономия топлива
Микропроцессорная система зажигания (МПСЗ) предназначена для формирования зависимости угла опережения зажигания карбюраторного бензинового двигателя от частоты вращения коленчатого вала и давления воздуха во впускном коллекторе.
Основанием для разработки данного изделия явились следующие обстоятельства:
- невозможность реализации оптимальных функциональных зависимостей углов опережения зажигания посредством центробежного и вакуумного регуляторов датчиков-распределителей, устанавливаемых на карбюраторные двигатели;
- значительный начальный разброс их характеристик при поставке на сборочный конвейер;
- изменение этих характеристик в процессе эксплуатации.
Что может хозяин карбюраторного автомобиля противопоставить самоуверенным впрысковым родичам? Ответ один — только МПСЗ.
Незначительный объем доработок — и ваш автомобиль полностью преображается, превратившись из некогда вялого и “тупого” в мягкий, комфортный, динамичный, обладающий лучшей приемистостью и даже напоминающий впрысковой.
Установка этой системы на двигатель позволяет “выжать” из него максимум на что он способен в данный момент.
Принцип действия
Улучшение характеристик происходит из-за того, что управление зажиганием возложено исключительно на микро-ЭВМ, трамблеру же отводится только функция разносчика искры.
Основным элементом МПСЗ является контроллер зажигания, разработанный согласно техническим требованиям, предъявляемым к системам зажигания автомобилей и представляющий собой достаточно простое микропроцессорное устройство, выполненное на микрочипе PIC, в памяти которого записаны таблицы с набором значений угла опережения зажигания в зависимости от частоты вращения коленчатого вала и абсолютного давления во впускном коллекторе двигателя. Соответствующая информация поступает с датчика-распределителя , если вариант мпсз на основе ДХ или с Датчика положения коленчатого вала, поддерживаються варианты ДУИ+ДНО, 60-2, 36-1. Дополнительным элементом полученной микропроцессорной системы зажигания является датчик абсолютного давления фирмы Freescale Semiconductor. Данный датчик служит для формирования углов опережения зажигания в зависимости от нагрузки на двигатель (разрежения во впускном коллекторе)
МПСЗ кроме своей прямой функции, выполняет управление клапаном ЭПХХ, поддерживает обороты холостого хода на заданном уровне.
Объем работ по установке МПСЗ действительно незначительный, все варианты МПСЗ имеют в комплекте готовый жгут проводки, скроссированный под конкретный автомобиль, поэтому пользователю требуеться всего лишь закрепить жгут в подкапотном пространстве и соединить необходимые разъемы. Так же немаловажным фактором являеться то, что все блоки МПСЗ уже запрограммированы под конкретное авто, тип двигателя, виды топлива.
Преимущества
После установки МПСЗ Вы получите следующие преимущества:
- Уменьшение расхода топлива, за счет оптимизации сгорания топливной смеси.
- Повышение динамических характеристик авто.
- Работа двигателя становится эластичной, плавные переходы между передачами без потери мощности на более низких оборотах двигателя.
- Режим поддержания холостого хода на заданном уровне, независимо от температуры двигателя и включенных потребителях (свет, печка и т.д.).
- Для работы с ГБО предусмотрена возможность управления от вашего переключателя газ/бензин при этом происходит программное переключение МПСЗ для работы с ГБО.
- Есть выход для установки тумблера, для переключения режимов (например бензин А92/А95).
Варианты комплектации
На сегодня существует 4 варианта комплектов МПСЗ:
- Система на датчике Холла (в качестве разносчика искры используется штатный переделанный трамблер). Для авто Таврия и Славута трамблер входит в комплект. Для другой марки авто стоимость зависит от стоимости трамблера или желания самостоятельно переделать свой трамблер.
- Система с двумя датчиками коленвала и трамблером в качестве разносчика искры (реализуемо, если в коробке КПП есть два отверстия и на маховике есть штифт).
- Система с одним датчиком коленвала для работы со шкивом или маховиком 60-2 и выходом на модуль зажигания ВАЗ 2112 (модуль приобретается самостоятельно либо комплектуется по желанию заказчика), трамблер не нужен для работы двигателя.
- Продолжение 2-го варианта. Отличие в том, что раздача искры осуществляеться с помощю катушки 2111.3705 и два обычных внешний коммутатора.
- Комплектация
Для программирования МПСЗ используется оригинальное программное обеспечение.
Программное обеспечение для работы с МПСЗ
Бортовой компьютер
Бортовой компьютер необходим для настройки работы МПСЗ, если у автовладельца нет ноутбука и нет возможности подключить систему к настольному компьютеру.
Экран бортового компьютера МПСЗ
Экран бортового компьютера МПСЗ
Функции бортового компьютера
Меню 1
- Регулировка октан-корректор;
- Отображение основных хар-стик.
Меню 2
- Включение и выключение индикации СЕ;
- Включение и выключение многоискрового пуска;
- Регулировка диапазона ДАД;
- Регулировка поправки начального давления;
- Начальный УОЗ трамблера.
Меню 3
- Включение и выключение поддержки ХХ;
- Регулировка ХХ;
- Максимальный угол на ХХ;
- Регулировка оборотов включения и выключения ЭПХХ.
Подменю 1
Подменю 2
Тумблер служит для переключения характеристик (бензин A95/A92).
БК поставляется с тремя вариантами подстветок: белой, зеленой или синей по желанию заказчика.
Источник - http://www.fuel-economy.com.ua/?page_id=22
Ваз 2106 | микропроцессорная система зажигания | жигули
Микропроцессорная система зажигания предназначена для воспламенения рабочей смеси в цилиндрах двигателя с установкой оптимального угла опережения зажигания для данного режима работы двигателя. Эта система управляет работой электромагнитного клапана экономайзера принудительного холостого хода (ЭПХХ).
С помощью микропроцессорной системы зажигания достигается более экономичная работа двигателя; при повышении его мощностных показателей исключается работа двигателя с детонацией и выполняются нормы по токсичности выхлопных газов. Эта система долговечнее и надежнее по сравнению с классической системой зажигания.
В ней отсутствуют детали, подвергающиеся износу (кроме электродов свечей зажигания).
Рис. 9.81. Нумерация выводов разъемов (вид со стороны проводов): XI — разъем блока управления системой зажигания; Х2 — разъем датчиков температуры и детонации; ХЗ —разъем датчиков положения коленчатого вала и абсолютного давления |
Рис. 9.80. Электрическая схема системы зажигания: В63 — датчик абсолютного давления; В70 — датчик температуры охлаждающей жидкости системы управления двигателем; В74 — датчик синхронизации; В92 — датчик детонации; D5 — блок управления системы зажимная; F1, F2, F3, F4 — свечи зажигания; Т1, Т4 — катушки зажигания; Y3 — электромагнитный клапан ЭПХХ; Х2 — соединитель с бортсетью автомобиля; Х51 — колодка диагностики; I — номера выводов Условные обозначения цветов проводов: Б — белый; Г — голубой; Ж — желтый; 3 — зеленый; К — красный; Кч — коричневый; О — оранжевый; Р — розовый; С — серый; Ч — черный, Ф — фиолетовый; БС — бело-серый; БЧ — бело-черный; ЖС — желто-серый; ЗБ — зелено-белый; КС — красно-серый; СГ — серо-голубой; СК — серо-красный; РЗ — розово-зеленый. Часть проводов может иметь цифровую маркировку |
Микропроцессорная система зажигания состоит из блока управления, двух катушек зажигания, свечей зажигания, датчиков, электромагнитного клапана ЭПХХ и контрольной лампы диагностики. Состав системы и схема соединений показана на pис. 9.80, а на рис. 9.81 дана нумерация выводов разъемов.
Блок управления микропроцессорной системой зажигания
Микропроцессорный электронный блок управления МИКАС 5.4.209.3763.004* предназначен для:
– формирования импульсов электрического тока для работы катушек зажигания с оптимальным углом опережения зажигания;
Источник - http://automn.ru/vaz-2106/vaz-34980-10.m_id-4478.m_id2-4480.html
Принцип работы микропроцессорной системы зажигания
Что такое микропроцессорная система зажигания и чем она лучше?
Сегодня в современных автомобилях широко применяется микропроцессорная система зажигания, которая полностью исключает механические приспособления. Она используется для автомобилей с инжекторным двигателем. Можно сказать, что это — классика, которая изначально производилась еще тридцать лет назад для «ВАЗа».
Как тогда, так и сейчас, ключевым элементом микропроцессорной системы является микропроцессор, который выполняет функции главного мозга. Основным преимуществом такой системы считают возможность регулировать углы опережения зажигания (далее УОЗ) посредством многих параметров.
Также стоит отметить, что нет необходимости ее настраивать в процессе эксплуатации.
Что собой представляет
Структурная схема МПСЗ состоит из:
- Датчики входные (датчик температуры и давления коллектора, датчик температуры мотора и напряжения аккумулятора);
- Преобразователи;
- Показатель дроссельной заслонки;
- Преобразователь аналого-цифровой;
- Ключевой элемент – микропроцессорный блок управления (мозговой центр);
- Память оперативная;
- Память постоянная;
- Катушки с двумя выходами;
- Свечи;
- Коммутаторы.
Электрическая схема микропроцессорной системы зажигания
Зажигание предназначено для воспламенения воздушно-топливной смеси в цилиндрах. Микропроцессорное зажигание имеет способность формировать зависимость УОЗ. Такое явление происходит только в карбюраторных бензиновых двигателях. Формирование зависимости угла опережения происходит в зависимости от того, с какой частотой вращается коленвал.
Причины, ставшие толчком создания данной системы следующие:
- невозможность исполнения нормальных и действующих зависимостей УОЗ регуляторов датчиков-распределителей, которые устанавливаются на карбюраторе двигателя;
- первоначальная не состыковка характеристик на этапе сборочного конвейера;
- значительное изменение характеристик на этапе их эксплуатации.
Использование для автомобиля МПСЗ — это подарок для вашего автомобиля.
Автомобиль, имеющий микропроцессорное зажигание, обладает большими преимуществами над автомобилем, в котором контактное или бесконтактное. Работа машины становится динамичной и приемистой.
Как работает
Бортовой компьютер автомобиля объединяет в себе все функции управления, которые объединяют микропроцессорное зажигание. Различные универсальные датчики выполняют функции входных сигналов. Кварцевый резонатор, который имеет микропроцессорный блок управления, прерывает цепь низкого напряжения, в зависимости от положения угла опережения, для каждого цилиндра.
Во время работы мотора авто на главный блок управления поступает информация о нагрузке, температуре, детонации, напряжения батареи, информация о положении заслонки дроссельной, а также о положении коленчатого вала и частоте его вращения.
Вся информация, которая подается от датчиков, поступает к преобразователю, который в свою очередь преобразует ее в электрические сигналы.
Преобразователь должен передавать только сигналы в цифровой форме, так как микропроцессорный блок управления обрабатывает только числа.
Но, некоторые сигналы не нуждаются в преобразовании, так как поступают в виде импульсов (сигналы о положении и частоте вращения коленвала). После того, как блок управления получает данные от преобразователя, микропроцессор определяет УОЗ относительно карты углов, которая хранится в памяти.
Микропроцессорное зажигание обладает огромным преимуществом, так как его работа обеспечивает правильное управление зажиганием в зависимости от положения и частоты вращения коленвала, заслонки дроссельной, температуры в моторе и т.д. Так как микропроцессорная система зажигания не обладает механическим распределителем (трамблером), поэтому есть возможность обеспечить высокую энергию искры.
Чем лучше трамблера?
Чтобы понять, чем МПC лучше распределителя (трамблера), я приведу несколько примеров негативной работы последнего элемента. Первое – это система автомобиля работает нестабильно из-за плохой работы самого трамблера. Второе – система трамблер состоит из движущихся частей.
Подвижные элементы иногда выходят из строя, а это сказывается на всей работе системы автомобиля. Часто причинами поломки подвижных элементов и контактов трамблера является электрическая эрозия и сгорание. От этого понижается его надежность и продуктивность.
Третье – заложенная конструктивно неспособность трамблера правильно реагировать на угол опережения зажигания относительно показателей оборота движка машины.
Что же касается МПСЗ, то эта система не только способна получать и обрабатывать данные об угле опережения зажигания, но и оптимально производить регулировку.
Чтобы произвести регулировку системе нужно получить показания двух параметров: температуры ОУЗ и датчика детонации. Трамблер не в силах воспринимать такие показатели.
Помимо этого качества, микропроцессорный блок устраняет и не допускает много других недочетов трамблера, в том числе и тех, которые указанные выше.
Если вы решили поставить на свою машину МПСЗ, то вы автоматически обладаете рядом преимуществ. Такими являются: уменьшение расхода топлива, улучшение и повышение динамических показателей авто, создаются плавные переходы от одной передачи к другой, при этом мощность остается та же при низких оборотах двигателя. Так что желаю вам успехов в установке и эксплуатации.
«Микропроцессорная система зажигания»
На записи показано что такое МСЗ и как ее установить на автомобиль.
http://mineavto.ru
Источник - http://legkoe-delo.ru/remont-avtomobilya/avto/85428-printsip-raboty-mikroprotsessornoj-sistemy-zazhiganiya
Как выставить зажигание с нуля на классике? Небольшая инструкция для карбовых машин. Блог › Точная настройка зажигания своими силами
›
Точная настройка зажигания своими силами
Добрый день, уважаемые члены клуба. Хочу поделиться с вами собственной методикой установки зажигания на классических двигателях с кулачковым зажиганием(так же эта методика подойдет и для классического мотора с электронным зажиганием).
Данную методику я использую уже очень долгое время. Основу этим знаниям положил мой отец. Он рассказал мне о принципе работы ДВС и о моменте зажигания. Показал пример “дедовского” способа установки зажигания, а дальше я уже на практике и неудачных опытах отработал свою методику.
Сколько машин не делал везде получалось на ура и все знакомые всегда обращаются, чтобы я им настроил.
Для работы вам потребуется:
-храповичный ключ или кривой стартер.-плоская отвертка с широким мощным жалом-рожковый ключ 12х13-набор щупов-резиновая конусная пробка
-свечной ключ
Итак, для того чтобы двигатель работал так, как ему положено необходимо, чтобы в нужный момент, а точнее за некоторое время до дохождения поршня до ВМТ образовалась искра между электродами свечи зажигания, которая воспламенит смесь к моменту подхода поршня к ВМТ и газ совершив работу по расширению протолкнет поршень вниз.
Чтобы искрообразование происходило в нужный момент в системе зажигания используется распределитель, основой которого является бегунок и контктная группа прерывателя. Самыми важными регулировками в кулачковом зажигании является зазор между кулачками прерывателя, УЗСК(угол замкнутого состояния контактов) и момент возникновения искры(опережение зажигания).
Перед тем как начать установку зажигания вы должны убедиться в следующем:
1)Свечи зажигания находятся в исправном состоянии и пригодны для дальнейшего использования. Если имеется масляный нагар советую прокалить. Наждачную бумагу даже самую мелкую я не советую использовать, т.к.
на большенстве свечей производитель использует специальное напыление и мелкий абразив от удаления нагара может попасть не туда куда нужно и в результате такой чистки можно испортить свечку(начнет пробивать). Прокаливать свечку до красна вовсе не обязательно, главное чтобы выгорели нежелательные масляные отложения.
Отрегулируйте зазор свечей равномерно, так как это прописано в руководстве. Используйте для этого обязательно специальный проволочный щуп.
2)Проверьте состояние контактов прерывателя. Если имеются следы выгорания металла, коррозии замените контакты. Не советую ремонтировать их. Куда дешевле их заменить и на долгое время позабыть о них. Я советую марку Beru.
3) Проверьте конденсатор тестером на заряд разряд…Ток должен стекать плавно и медленно. Лучше использовать для этого стрелочный тестер, так нагляднее видно.
4) Убедитесь так же о хорошем контакте провода от катушки зажигания. Катушку кстати проверить тоже бы не помешало. Проверить можно так же тестером, мегометром или как самый простой вариант совершенно бесплатно в любом нормальном автомагазине на стенде.
5) Удалите загрязнения с катушки зажигания, трамблера и крышки распределителя. При наличии нагара на крышке распределителя замените ее. Не экономьте, берите хорошую заводскую крышку.
7)Проверить работоспособность вакуумного опережения зажигания. Привод должен ходить без заедания, трубка должна быть толстостенной без прорывов и трещин.
Итак, убедившись в том что все исправно и пригодно и заменено на новое приступим к самой регулировке.
Рассмотрим случай если трамблер снимался с автомобиля целиком. Что бы его установить на место нужно найти один из целиндров 1-ый или 4-ый в котором при совмешении меток на шкиве коленвала и на лобовой крышке будет идти такт сжатия. Сделать это очень просто. Находим конусную резиновую пробку и вставляем ее потуже в свечное отверстие.
Я всегда ищу 4 цилиндр, потому что именно в нем на классическом моторе при совмещении всех меток ГРМ идет сжатие. Плавно крутим коленвал спец храповичным ключем или кривым стартером…как нужный цилиндр будет найден резиновая пробка вылетит из нужного цилиндра.
Советую ее привязать к чему нибудь, я постоянно потом долго ее искал))) Далее совмещяем точно метки на шкиве и на лобовой крышке(самую длинную). Вставляем трамблер по шлица так чтобы бегунок встал ровно перпендикулярно плоскости головки и смотрел в ее сторону. Далее подвынимаем трамблер до состояния чтобы можно было крутить вал не зацепляя шлицы и перетыкаем на один зуб по часовой стрелке.
Это необходимо для того чтобы дать трамблеру полный ход регулировки…а то обычно отрегулируешь а потом вакумный привод опережения перекрывает доступ к свече первого цилиндра;-) Итак, трамблер у нас на месте. Теперь сам процесс. Выставляем зазор между контактами так как указано по руководству. Для классического мотора этот зазор 0.45.
Угол замкнутого состояния выставить самому не получится, да и лишня работа.его можно будет выставить более точно по прибору, так же такая функция присутствует в специальных автомобильных тестерах. Подключаем всю проводку как положено, выставляем регулировку момента ровно по середине ее хода. Вставляем свечу 4 цилиндра в соответствующий свечной провод, включаем зажигание.
Отводим шкиф против часовой стрелки градусов на 45. Создаем контакт с массой для свечи зажигания и начинаем плавно проворачивать шкиф по направлению часовой стрелки. Как проскочит искра между электродами прекращаем вращение коленвала. смотрим на метки(метку на шкиве и среднюю метку на крышке). Если у них есть разбег необходимо повернуть трамблер на несколько градусов нужную сторону.
Если метка шкива убежала вперед от метки лобовой крышки по направлению вращения это значит зажигание сильно позднее и трамблер следует повернуть против часовой стрелки. Если метка наоборот находится до метки на шкиве это значит зажигание сильно раннее и трамблер следует повернуть по часовой стрелке на несколько градусов.
Далее вновь повторяем процедуру:взвращаем шкиф назад и вновь смотрим в какой момент проскочит искра…сравниваем метки, регулируем. Когда достаточный опыт все получается очень быстро и ловко. Замечу, чем медленнее и аккуратнее вы крутите шкиф тем точнее выставите зажигание.
Как добъётесь точного совмещения меток затяните трамблер и проверните коленвал подных два оборота и проверьте точно сть регулировки еще раз. Если есть разбег устраните, если всё точно заводите мотор, прогревайте, зажигание установлено. Далее необходимо разогнать машину до скорости в 40-50 кмч и включив 4 передачу резко нажать на газ. Если будет слышен резкий звук перебора клапанов то зажигание необходимо сделать попозднее. Обычно если регулировка произведена точно ничего больше настраивать не приходится.
Так же расскажу о более быстром метоже, для первого пуска авто после кап.ремонта например. Установка трамблера на место осуществляется уже по рассказаному мною принципу а вот момент выставить можно проще.
Найдя 4-ый цилиндр совмещаем метку коленвала и средюю метку на лобовой крышке, далее поворачиваем медленно трамблер по часовой стрелке/против часовой стрелки и как проскочит искра останавливаемся, затягиваем трамблер.
Всё, зажигание у вас выставлено.
Еще существует способ установки зажигания по стробоскопу. Способ наиболее простой, точный но зависит от исправности самого стробоскопа.
Стробоскопы все разные по своей конструкции, но принцип работы у всех одинаковый, как и у самих ДВС)) Итак, подключаем провода питания стробоскопа на клеммы и провод приемник сигнала импульсов прямо на колпачок све не снимая его. Прибор тут же покажет оборты авто. Настройка производится на оборотах ХХ.
Помечаем метку на коленвале ярко белым маркером или корректором. Направляем стробоскоп на шкиф и под воздействием вспышек излучаемых стробоскопом с определеннй часттой мы увидим помеченную метку неподвижной. Сдвигаем трамблер в нужную сторону до совмещения необходимых меток, затягиваем.
Внесу лишь одну пометку: если метка под воздействием лучей стробоскопа не стоит на одном месте и бегает туда-сюда это говорит о неисправности в системе зажигания(в основном конденсатор или контакты).
Удачи в ремонте и на дорогах. Следущий пост будет посвящен полной переборке карбюратора ДААЗ с полным фотоотчетом.
Источник: https://levevg.ru/how-to-put-the-ignition-from-scratch-on-the-classics-a-small-instruction-for-carving-machines/
Как работает система зажигания?
Одним из основных условий успешного запуска двигателя есть наличие исправной системы зажигания, отвечающей за воспламенение топливовоздушной смеси путем искрообразования в нужном цилиндре силового агрегата. Учитывая всю важность указанной системы, знание ее устройства и принципов работы пригодится любому автолюбителю, чтобы в случае необходимости можно было самостоятельно устранить возникшую неисправность.
1. Особенности системы зажигания
Основными требованиями, которые обычно предъявляются к системе зажигания, есть:
1. Необходимость образования искры в цилиндре (находящемся на такте сжатия) соответственно общему порядку работы цилиндров;
2. Обеспечение своевременного момента зажигания, то есть искра должна появляться в конкретный момент, который соответствует оптимальному углу его опережения (при текущих рабочих условиях мотора) и зависит как от оборотов двигателя, так и от нагрузки на него;
3. Снабжение искры достаточной энергией, то есть тем ее количеством, которое необходимо для возгорания рабочей смеси (на этот показатель оказывает влияние состав, плотность и температура рабочей смеси);
4. Рабочая надежность, выражающаяся в непрерывном искрообразовании.
На сегодняшний день существует несколько видовых вариантов системы зажигания, среди которых выделяют контактную, бесконтактную и электронную. Все они имеют ряд общих особенностей. Например, в данных системах отсутствует традиционный распределитель, а его место занимает четырехвыводная катушка зажигания, в состав которой входят две двухвыводные, объединенные в один блок.
В первичных обмотках зажигания, управление током осуществляется с помощью специального контроллера, который получает информационные данные от соответствующих датчиков.
Положительной особенностью системы зажигания есть отсутствие в ней подвижных деталей, благодаря чему она не нуждается в постоянном обслуживании или регулировках, а в рабочих целях используется метод распределения искры, который еще часто именуют «методом холостой искры».
Цилиндры силового агрегата объединены в пары – 1 с 4, а 2 с 3, причем образование искр проходит сразу в двух цилиндрах: в том, где заканчивается такт сжатия, и в том, где проходит такт выпуска.
Учитывая, что ток в обмотках катушек имеет постоянное направление, образование искры на одной свече всегда проходит от центрального электрода на боковой, а на второй – наоборот, от бокового на центральный.
Процесс управления зажиганием выполняется специальным контролером.
Датчик положения коленвала передает ему некий опорный сигнал, исходя из которого, контроллер проводит расчет последовательности срабатывания катушек модуля зажигания, а для того чтобы управление было точным, устройству нужна следующая информация:
– частота вращения коленвала силового агрегата;
– нагрузка, которую испытывает мотор автомобиля;
– температура охлаждающей жидкости системы;
– положение коленвала;
– положение распредвала;
– наличие детонации.
2. Устройство системы зажигания
Несмотря на некоторое конструктивное различие разных систем зажигания, можно выделить следующие, общие элементы всех устройств:
1. Источник питания – бортовая сеть автомобиля, вместе со своими источниками, представленными в виде аккумуляторной батареи и генератора;
2. Выключатель зажигания;
3. Устройство, отвечающее за управление накопителем энергии. В его задачу входит определение момента начала накопления и момента передачи энергии на свечу зажигания, то есть определение самого момента зажигания. Исходя из конструктивных особенностей системы зажигания конкретного автомобиля, данное устройство может иметь разный вид.
Механический прерыватель – осуществляет непосредственное управление процессом накопления (первичной цепью) и отвечает за замыкание/размыкание питания первичной обмотки.
Контакты прерывателя можно увидеть, заглянув под крышку распределителя. Пластичная пружина подвижного контакта прижимает его к недвижимому контакту.
Их размыкание выполняется только на короткий срок, а конкретно в момент, когда набегающий кулачок валика привода оказывает давление на молоточек подвижного контакта.
Параллельно контактам включен и конденсатор, который предотвращает их обгорание в момент размыкания. Это стало возможным благодаря поглощению большей части электроразряда, из-за чего существенно уменьшается искрение. Однако, это еще не все полезное влияние конденсатора.
Вторая половина преимущества его присутствия базируется на создании в цепи низкого напряжения обратного тока, что положительно влияет на скорость исчезновения магнитного поля. Чем быстрее это произойдет, тем больший ток появится в цепи высокого напряжения.
Если конденсатор выйдет из строя – мотор не сможет нормально работать, ведь силы напряжения во вторичной цепи не хватит, чтобы обеспечить стабильное искрообразование.
Прерыватель находится в том же корпусе, что и распределитель высокого напряжения, из-за чего последний получил название прерывателя-распределителя, а саму систему стали называть «классической системой зажигания».
Вместе с прерывателем-распределителем в корпусе находится еще одна важная деталь – центробежный регулятор опережения зажигания, использующийся с целью изменения момента образования искры в соответствии со скоростью вращения коленвала. Менять момент возникновения искры между электродами свечей способен и вакуумный регулятор опережения зажигания, только он делает это в зависимости от нагрузки на мотор автомобиля.
Если механический прерыватель оборудован транзисторным коммутатором, то в этом случае он управляет только ним, а тот, в свою очередь, отвечает за управление процессом накопления энергии.
Такая конструкция существенно превосходит аналогичные устройства без транзисторного коммутатора, так как здесь контактный прерыватель более надежный, чему способствует протекание сквозь него тока меньшей силы, а значит, пригорание контактов во время размыкания практически полностью исключается.
Соответственно, конденсатор, параллельно подключенный к контактам прерывателя, тут просто не нужен, а в остальном – система полностью идентична классическому варианту. Обе системы, имеющие механический прерыватель, обладают общим названием – «контактные системы зажигания».
Системы с транзисторным коммутатором, оборудованные бесконтактным датчиком (импульсным генератором), могут быть индуктивного типа, основанными на эффекте Холла или относиться к оптическому типу.
В данном случае место механического прерывателя занимает импульсный датчик-генератор с преобразователем сигналов, который посредством транзисторного коммутатора осуществляет управление накопителем энергии.
Как правило, датчик-генератор расположен внутри распределителя, конструкция которого ничем не отличается от конструкции аналогичной детали в контактной системе, поэтому указанный узел получил название «датчика-распределителя».
Одна из вариаций такой системы, оборудованная распределителем механического вида и катушкой зажигания, размещенной отдельно от распределителя и коммутатора, называется «бесконтактной системой зажигания». Конечно, существует много ее вариантов, предусматривающих применение одного или нескольких соответствующих датчиков.
Также, на основе управления зажиганием выделяют еще один вариант систем – микропроцессорные системы зажигания, которые оборудованы микропроцессорным блоком зажигания (или блоком управления работой мотора с подсистемой управления зажигания), а также имеют датчики и коммутатор.
В таком случае, блок управления получает данные о работе силового агрегата (количестве оборотов, положении коленвала, положении распредвала, нагрузках на мотор и температуре охлаждающей жидкости) от датчиков, и уже исходя из результатов их алгоритмической обработки, осуществляет управление коммутатором, который, в свою очередь, управляет накопителем энергии.
Процесс регулировки опережения зажигания реализован в блоке управления программно.
В системе зажигания электронного типа, в роли устройства управления накопителем энергии, выступает электронный блок управления (ЭБУ), который является главной составной частью такой системы.
Его работа базируется на сборе информации, получаемой от различных датчиков (положения коленвала, положения распредвала, датчика детонации, датчика угла открытия дросселя), на расчете оптимального момента зажигания и времени зарядки катушки, а также через коммутатор – он отвечает за управление первичной цепью катушки.
На выпускаемых сегодня автомобилях блок управления зажиганием объединен с блоком, отвечающим за впрыск топлива.
4. Накопители энергии, которые, в зависимости от типа системы, могут разделяться на две группы:
– С накоплением энергии в катушке (катушках) зажигания, где энергия собирается в первичной обмотке, а при размыкании первичной цепи, во вторичной образуется высокое напряжение, подающееся впоследствии на свечи зажигания. Такой вариант системы есть наиболее распространенным.
– С накоплением энергии в конденсаторе, после чего, в нужный момент, она проходит через катушку зажигания. Во второй цепи также проходит индуцирование высокого напряжения, которое позже подается на свечи.
Устройство накопителя энергии такого типа часто называют «зажиганием от разряда конденсатора» или «конденсаторным зажиганием», обозначая аббревиатурой CDI (Capacitor Discharge Ignition).
Такая система хоть и не часто, но встречается на автомобилях, правда большее распространение она получила на мотоциклах, гидроциклах и скутерах. Ее главная отличительная черта в том, что энергия искры не зависит от оборотов мотора.
5. Система распределения зажигания. На транспортных средствах может применяться один из двух типов такой системы: система оборудована механическим распределителем или же система статистического распределения.
– Системы, обладающие механическим распределителем энергии, как правило, работают посредством трамблера, который и распределяет напряжение по свечам цилиндров силового агрегата.
В системах зажигания контактного типа он, зачастую, объединен с прерывателем, а в бесконтактных – с импульсным датчиком.
В более модернизированных системах трамблер либо вообще отсутствует, либо совмещен с катушкой зажигания, коммутатором и датчиками различных систем (CID, HEI, CIC).
– Системы, основывающиеся на статическом распределении энергии, пришли на смену классическому распределителю. Они получили свое название из-за того, что у них отсутствуют движущиеся части, которые обычно входят в конструкцию распределителя.
Системы такого рода обозначают аббревиатурой DLI (DistributorLess Ignition) и DIS (DistributorLess Ignition System), что означает “система без распределителя”, и DI (Direct Ignition), подразумевающие “систему прямого, или непосредственного зажигания”. DLI – имеет отношение ко всем системам без высоковольтного распределителя; DI – относится только к тем, в которых присутствуют индивидуальные катушки, а DIS – это системы синхронного зажигания, обладающие двухвыводными катушками. Возможно, такой подход и не совсем верный, но именно он чаще всего употребляется.
6. Высоковольтные провода. Выступают в роли соединительного элемента между накопителем энергии и ее распределителем (или свечами), а также соединяют распределитель со свечами зажигания. В системах зажигания типа COP («катушка на свече») данный элемент отсутствует.
7. Свечи зажигания. Применяются с целью создания искрового разряда и последующего воспламенения рабочей смеси, находящейся в камере сгорания. Свечи зажигания располагаются в головке цилиндра, и как только на них попадает импульс тока высокого напряжения, между их электродами тут же проскакивает искра, воспламеняющая рабочую смесь.
На большинстве транспортных средств обычно установлено по одной свече в каждый цилиндр, но иногда встречаются и более сложные системы, обладающие двумя свечами, причем они не всегда срабатывают одновременно.
Например, при малых оборотах двигателя сначала срабатывает та свеча, которая находится ближе к впускному клапану, а за ней уже вторая, которая обеспечивает более быстрое и полное сгорание топливовоздушной смеси.
3. Как работает система зажигания?
Несмотря на то, к какому типу относится та или иная система зажигания, все они имеют несколько общих рабочих этапов, предусматривающих накопление нужного заряда, его высоковольтное преобразование, распределение, образование на свечах искр и возгорание топливной смеси.
Любой из них требует слаженной и точной работы, а значит, стоит выбирать только проверенные устройства, доказавшие свою надежность.
В этом плане наилучшим вариантом принято считать электронную систему зажигания, где всем рабочим процессом (подачей искры и ее распределением по свечам) управляет электроника.
Электронная система зажигания – это не отдельный, самостоятельный компонент, а составляющая часть системы управления мотором, которая основывается на работе датчика положения коленвала, датчика, фиксирующего частоту его вращения и датчика массового расхода воздуха. Получив от них нужную информацию, ЭБУ принимает решение касательно момента подачи искры и распределения зажигания. Естественно, в блоке управления уже прописаны определенные команды, выполняющиеся после получения и анализа данных с упомянутых датчиков.
В такой системе воспламенения топливной смеси, полностью исключены механические движущиеся части, а благодаря специальным датчикам и особому блоку управления, образование и подача искры проходят намного быстрее и надежнее, нежели у аналогичных систем контактного и бесконтактного типа. Этот факт позволяет улучшить работу мотора, увеличив его мощность и снизив потребление топлива. Более того, нельзя не отметить высокую рабочую надежность устройств данного типа.
Бесконтактное зажигание отличается тем, что не зависит напрямую от размыкания контактов, а главную роль в процессе образования искры здесь выполняет транзисторный коммутатор и специальный датчик.
Отсутствие прямой зависимости от качества и чистоты поверхности контактной группы гарантирует более эффективное искрообразование.
Однако, как и в контактном варианте системы зажигания, здесь также используется прерыватель-распределитель, отвечающий за своевременную передачу тока на свечу зажигания.
Рабочий принцип бесконтактной системы предусматривает выполнение следующих действий.
Когда коленвал двигателя приходит в движение, датчик-распределитель формирует соответствующие импульсы напряжения и направляет их на транзисторный коммутатор, задача которого – создавать импульсы тока в первичной обмотке катушки зажигания.
В момент прерывания во вторичной обмотке катушки проходит индуцирование тока высокого напряжения. Он подается на центральный контакт распределителя, а оттуда, посредством проводов высокого напряжения, поступает на свечи зажигания.
Последние и осуществляют воспламенение топливовоздушной смеси.
В случае увеличения оборотов коленвала, за регулировку угла опережения зажигания отвечает центробежный регулятор, а при изменении нагрузки на силовой агрегат эта задача возлагается на вакуумный регулятор опережения зажигания.
Принцип работы контактного зажигания несколько отличается от вариантов, приведенных выше. Когда контакт прерывателя пребывает в замкнутом состоянии, ток низкого напряжения проходит по первичной обмотке катушки.
В процессе их размыкания, во второй катушке происходит индуцирование тока высокого напряжения, и посредством высоковольтных проводов он передается на крышку распределителя, после чего расходится по свечам зажигания с определенным углом опережения зажигания.
Как только обороты коленвала увеличиваются, возрастают и обороты вала прерывателя-распределителя, вследствие чего грузики центробежного регулятора начинают расходиться, перемещая подвижную пластину вместе с кулачками прерывателя. Это приводит к тому, что размыкание контактов происходит несколько раньше, из-за чего увеличивается угол опережения зажигания. С уменьшением оборотов коленвала угол опережения зажигания тоже уменьшается.
Более модернизированным типом контактной системы является ее контактно-транзисторный вариант.
Он отличается наличием транзисторного коммутатора в цепи первичной обмотки катушки, управление которым выполняется посредством контактов прерывателя.
За счет его использования, удалось добиться снижения силы тока в цепи первичной обмотки, что положительно сказалось на длительности эксплуатации контактов прерывателя.
Источник: https://auto.today/bok/3387-princip-raboty-sistemy-zazhiganiya.html
Микропроцессорная система зажигания
Система зажигания — комплекс устройств автомобиля, отвечающих за формирование и передачу тока к свечам автомобиля для последующего воспламенения подготовленной горючей смеси.
Один из вариантов исполнения — микропроцессорная система зажигания, в основе которой лежат электронные узлы. Сегодня есть мнение, что бесконтактное и электронное зажигание — одно и то же устройство. Но это не так.
Ниже рассмотрим принципы построения микропроцессорных устройств и тонкости работы.
В чем суть?
Сокращенное название микропроцессорной системы зажигания — МПСЗ. Главное назначение — создание угла опережения силового узла, зависящего от воздушного давления в системе впуска и вращения коленвала. Ученые не один десяток лет шли к созданию чего-то подобного, но последней «каплей», подтолкнувшей к разработке МПСЗ стали следующие моменты:
- сложность регулирования углов опережения путем применения регуляторов-датчиков, работающих на вакуумном и центробежном принципе;
- текучесть (изменение) показателей при эксплуатации автомобиля;
- сильный разброс параметров при поставке на сборки на конвейер.
Главная проблема машины с карбюраторным мотором — отсутствие альтернатив действующей системе зажигания. Но выход был найден — МПСЗ. Электронная система зажигания дала новое дыхание, сделала машину мощнее и приемистее. При правильной установке управление становится комфортабельным и мягким. Кроме этого, монтаж микропроцессорного узла — шанс выжать максимум из мотора без ущерба для ресурса.
Устройство
Электронная система зажигания — главная составляющая управления мотором. Микропроцессорные узлы выступают в роли проводников и организаторов впрыска с последующим воспламенением горючего. Выпускаются также машины, в которых МПСЗ управляет и другими устройствами — охлаждения, впуска и выпуска.
МПСЗ выпускается в нескольких вариациях. Основные производители Бош, Симос, Мотроник и прочими. Принцип действия остается неизменным, а вот конструкция разная. При этом системы МПСЗ условно делятся на две категории:
- прямого зажигания. Здесь подача тока происходит по цепочки катушка зажигания — свеча;
- с распределителем. В данном случае посредник в цепи — механический распределитель, который подает ток высокого напряжения на конкретную свечу.
Микропроцессорное зажигание состоит из группы стандартных узлов — источника напряжения, свечей, выключателя зажигания, группы высоковольтных проводников. Электронный узел включает в себя ряд дополнительных элементов:
- входные датчики — устройства, контролирующие параметры силового узла, улавливающие текущие отклонения и преобразующие сигнал в электрический импульс. МПСЗ работает на базе стандартной группы датчиков, применяемых в системе управления силовым узлом — частоты вращения, детонации, температуры ОЖ и воздуха, положения заслонки дросселя и педали газа, датчика давления кислорода и прочих. Число и название датчиков в каждой конкретной модели автомобиля может меняться;
- ЭБУ силового узла — «приемник», который получает поступающие от упомянутой группы сигналы, производит обработку и направляет в сторону воспламенителя;
- воспламенитель — микропроцессорное устройство, гарантирующее подачу и отключение искры. Основа узла — транзистор. Когда он открыт, то цепь тока проходит через «первичку» катушки зажигания. Если же транзистор в закрытом положении, то ток наводится уже во «вторичке» катушки.
Микропроцессорная система зажигания оборудована:
- одной катушкой, которая общая для узлов;
- сдвоенным или индивидуальным устройством генерации напряжения.
Каждый из вариантов обладает отличительными чертами:
- общая катушка монтируется в устройствах с микропроцессорным зажиганием, оборудованным распределителем;
- индивидуальный тип катушки монтируется на свече, что позволяет отказаться от установки высоковольтных проводников;
- катушки сдвоенного типа монтируются в узлах прямого зажигания. Так, на 4-цилиндровом моторе монтируется пара катушек. Одна устанавливается на пару цилиндров 1 и 4, а вторая — на 2 и 3. В каждом устройство генерируется ток высокого напряжения. Искра образуется одновременном в двух камерах сгорания. В одной воспламеняется подготовленная топливная смесь, а в другой искра работает впустую.
Принцип действия
Интерес вызывает принцип действия МПСЗ. Здесь узел работает с учетом следующих принципов:
- на основании полученных данных ЭБУ рассчитывает требуемые параметры работы;
- подается команда на воспламенитель, передающий сигнал на катушку. При этом в по цепи «первички» начинает течь ток;
- в момент прекращения подачи напряжения происходит индуцирование тока во «вторичке» катушки зажигания. После этого напряжение поступает к свече зажигания с последующим воспламенением смешанного с воздухом горючего.
При движении происходит изменения частоты вращения коленвала. Этот процесс держат под контролем два датчика — положения распредвала и частоты вращения коленвала. Как только в частоте вращения происходят изменения, подается соответствующая команда к ЭБУ, который меняет угол опережения.
Если при движении меняется нагрузка на силовой узел, то контроль угла опережения и фиксация изменений возлагается на ДМРВ — датчик, контролирующий массовый расход воздуха. Кроме этого, вспомогательную информацию по воспламенению и сгоранию горючей смести предоставляет датчик детонации. Остальные контролирующие узлы фиксируют параметры работы силового узла и управляют другими процессами.
Виды комплектации
На рынке и в магазинах реализуется несколько типов электронных систем зажигания. В каждом из вариантов свой датчик давления (особенность — встраивание в микропроцессорный блок). Рассмотрим каждый из вариантов подробнее:
- Система, собранная на базе датчика Холла. Здесь задействован трамблер, в котором отсутствуют грузики и вакуум корректор. Кроме этого, участок ДХ отличается жесткой фиксацией, что устраняет минусы, характерные для привычного трамблера. Для машин моделей ЗАЗ, АЗЛК, ВАЗ и прочих допускается комплектация уже переработанного устройства. При желании лично переделать трамблер и добиться экономии стоит воспользоваться инструкцией и произвести сборку по предоставленному алгоритму.
- Устройство с трамблером и парой датчиков коленвала. При таком исполнении траблер берет на себя функцию «разносчика» искры. Такую схему стоит воплотить в жизнь при наличие:
- пары отверстий в КПП;
- штифта в маховике.
В автомобилях отечественного производства, к примеру, в Таврии или ВАЗе, используется маховик без штифта. Выход в этом случае — поставить кронштейн от Ланоса и приварить штифт к шкиву коленвала. В «девятках» и «восьмерках» потребуется монтаж штифта к маховику без демонтажа коробки передач.
- Система работы со шкивом. Здесь монтируются следующие узлы:
- один датчик коленвала;
- трамблер для раздачи системы зажигания.
Допускается применение счетверенной катушки зажигания и пары простых коммутаторов. Если применяется счетверенная катушка, то в монтаже трамблера нет необходимости. При переделке Таврии возможен монтаж инжекторного маховика или установка шкива коленвала от Дэу Ланос.
- Оптимизированный вариант устройства с трамблером и датчиками коленвала. Здесь применяется счетверенная катушка зажигания с двумя коммутаторами.
Чтобы проверить наличие штифта, стоит провести следующие манипуляции:
- поставить коленвал в позицию МЗ (ориентация по левой метке на кожухе ГРМ). Далее стоит найти специальный штырь, который установлен возле троса спидометра;
- на «восьмерках» и «девятках» штырь должен совпадать с позицией ВМТ;
- установить новую проводку, при том что родная остается в роли резервной.
При наличии сомнений микропроцессорное зажигание стоит перевести на стандартную систему.
Преимущества
Использование электронной системы зажигания — шанс оптимизировать работу мотора под разное топливо. При этом появляются следующие плюсы:
- прирост мощности и тяги (особенно, если речь идет об автомобилях с ГБО);
- отсутствие детонации. Пропадают стуки «пальцев» в период набора скорости (даже если залито дне идеальное горючее);
- бензин сгорает быстрее, что способствует снижению расхода;
- автомобиль проще завести зимой;
- электронная система зажигания находится под контролем, благодаря специальному дисплею;
- появляется шанс для монтажа тумблера, позволяющего переключать систему на разные виды топлива.
Кроме перечисленных преимуществ, стоит выделить и ряд дополнительных опций МПСЗ:
- обороты ХХ поддерживаются за выставленном параметре;
- УОЗ в автоматическом режиме настраивается с датчиком детонации;
- отключение стартера производится автоматически, сразу после пуска мотора;
- появляется опция управления вентилятором охладительной системы;
- параметры вносятся через ноутбук, что упрощает и ускоряет процесс.
Итоги
Микропроцессорная система зажигания — альтернатива другим устройствам с аналогичной функциональностью. Популярность электроники обусловлена в первую очередь простотой настройки, точностью работы и сравнительной надежностью. Главное — правильно реализовать замыслы с помощью квалифицированных мастеров.
Источник: http://mekhanikpro.ru/mikroprotsessornaya-elektronnaya-sist/
Назначение систем зажигания
Система зажигания предназначена для воспламенения топливовоздушной смеси в цилиндрах бензинового двигателя.
Топливовоздушная смесь воспламеняется в камере сгорания двигателя посредством электрического разряда между электродами свечи зажигания, установленной в головке цилиндров.
Для создания искры между электродами свечи зажигания применяют системы зажигания от магнето и батарейные системы зажигания, источниками высокого напряжения в которых являются индукционные катушки.
Рис. Схема батарейной системы зажигания
Система зажигания состоит из следующих основных элементов:
- источник тока ИТ, функцию которого выполняет аккумуляторная батарея или генератор
- выключатель ВК цепи электроснабжения (выключатель зажигания)
- датчик Д углового положения коленчатого вала
- регуляторы момента зажигания РМЗ, которые задают определенный момент подачи высокого напряжения на свечу в зависимости от частоты вращения коленчатого вала, разрежения Δрк во впускном трубопроводе и октанового числа бензина
- источник высокого напряжения ИВН, содержащий промежуточный накопитель энергии НЭ и преобразователь низкого напряжения в высокое
- силовое реле СР, в качестве которого могут служить механические контакты прерывателя или электронный ключ (транзистор или тиристор)
- распределитель Р импульсов высокого напряжения по свечам
- помехоподавительные устройства ПП (экранирующие элементы системы зажигания или помехоподавительные резисторы)
- свечи зажигания СВ, на которые подается высокое вторичное напряжение
В батарейной системе зажигания источником энергии является аккумуляторная батарея или генератор (в зависимости от режима работы двигателя). Система зажигания от магнето принципиально отличается от батарейной тем, что источник электроэнергии в ней — магнитоэлектрический генератор, конструктивно объединенный с индукционной катушкой. Система зажигания от магнето в настоящее время на автомобилях практически не применяется, однако находит применение на пусковых бензиновых двигателях тракторных дизелей.
Система зажигания обеспечивает генерацию импульсов высокого напряжения в нужный момент времени на тактах сжатия в цилиндрах двигателя и их распределение по цилиндрам в соответствии с порядком их работы.
Момент зажигания характеризуется углом опережения зажигания УОЗ, который представляет собой угол поворота коленчатого вата от положения в момент подачи искры до положения, когда поршень проходит через верхнюю мертвую точку ВМТ.
Электрическая искра вызывает появление в ограниченном объеме топливовоздушной смеси первых активных центров, от которых начинается развитие химической реакции оксидирования топлива, сопровождающейся выделением теплоты. Процесс сгорания рабочей смеси разделяют на три фазы:
- начальная, в которой формируется пламя, инициированное искровым разрядом в свече
- основная, в которой пламя распространяется на большую часть камеры сгорания
- конечная, в которой пламя догорает у стенок цилиндра
Рис. Система зажигания с накоплением энергии:
а — в магнитном поле; б — в электрическом поле
Для бесперебойного искрообразования на свечу зажигания необходимо подать напряжение до 30 кВ.
Высокий уровень напряжения обеспечивает промежуточный источник энергии. По способу накопления энергии в промежуточном источнике различают системы с накоплением энергии в магнитном поле (в индуктивности) или в электрическом поле конденсатора (в емкости).
В обоих случаях для получения импульса высокого напряжения используется катушка зажигания, представляющая собой трансформатор (или автотрансформатор), содержащий две обмотки: первичную L1 с малым числом витков и электросопротивлением в доли и единицы ома и вторичную обмотку L2 с большим числом витков и сопротивлением в единицы и десятки килоом.
Автотрансформаторная связь обмоток упрощает конструкцию и технологию изготовления катушки, а также несколько увеличивает вторичное напряжение. Коэффициент трансформации катушек зажигания находится в пределах 50—225.
В системах зажигания с накоплением энергии в катушках зажигания (в индуктивности) первичная обмотка L1 катушки подключается к источнику электроснабжения последовательно через механический или электронный прерыватель S2.
В системах зажигания с накоплением энергии в электрическом поле конденсатора (в емкости) первичная обмотка катушки периодически подключается к конденсатору управляемым электронным переключателем S2.
Конденсатор предварительно заряжается от источника электроснабжения на автомобиле через статический преобразователь напряжения.
Источник: https://ustroistvo-avtomobilya.ru/sistema-zazhiganiya/naznachenie-sistem-zazhiganiya/